Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T01:20:41.951Z Has data issue: false hasContentIssue false

Characterization of InGaN and InAlN Epilayers by Microdiffraction X-Ray Reciprocal Space Mapping

Published online by Cambridge University Press:  08 February 2012

V. Kachkanov
Affiliation:
Diamond Light Source Ltd, Didcot, United Kingdom
I.P. Dolbnya
Affiliation:
Diamond Light Source Ltd, Didcot, United Kingdom
K.P. O’Donnell
Affiliation:
Department of Physics, SUPA, University of Strathclyde, Glasgow, Scotland, United Kingdom
K. Lorenz
Affiliation:
Instituto Tecnologico e Nuclear, Sacavem, Portugal.
S. Pereira
Affiliation:
CICECO, Departamento de Fisica and I3N, Universidade de Aveiro, Aveiro, Portugal
R.W. Martin
Affiliation:
Department of Physics, SUPA, University of Strathclyde, Glasgow, Scotland, United Kingdom
P.R. Edwards
Affiliation:
Department of Physics, SUPA, University of Strathclyde, Glasgow, Scotland, United Kingdom
I.M. Watson
Affiliation:
Institute of Photonics, SUPA, University of Strathclyde, Glasgow, Scotland, United Kingdom
Get access

Abstract

We report a study of InGaN and InAlN epilayers grown on GaN/Sapphire substrates by microfocused three-dimensional X-ray Reciprocal Space Mapping (RSM). The analysis of the full volume of reciprocal space, while probing samples on the microscale with a focused X-ray beam, allows us to gain uniquely valuable information about the microstructure of III-N alloy epilayers. It is found that “seed” InGaN mosaic nanocrystallites are twisted with respect to the ensemble average and strain free. This indicates that the growth of InGaN epilayers follows the Volmer-Weber mechanism with nucleation of “seeds” on strain fields generated by the a-type dislocations which are responsible for the twist of underlying GaN mosaic blocks. In the case of InAlN epilayer formation of composition gradient was observed at the beginning of the epitaxial growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Mukai, T., Jpn. J. Appl. Phys. 32, L8 (1993).Google Scholar
2. Fewster, P.F., Andrew, N.L., J. Phys. D: Appl. Phys. 28 A97 (1995).Google Scholar
3. Pereira, S., Correia, M. R., Pereira, E., O’Donnell, K. P., Alves, E., Sequeira, A. D., Franco, N., Appl. Phys. Lett. 79, 1432 (2001) .Google Scholar
4. Detchprohm, T., Hiramatsu, K., Itoh, K., Akasaki, I., Jpn. J. Appl. Phys., Part 2 31, L1454 (1992).Google Scholar
5. Tanaka, M., Nakahata, S., Sogabe, K., Nakata, H., Tabioka, M., Jpn. J. Appl. Phys. 36, L1062 (1997) .Google Scholar
6. Paszkowicz, W., Powder Diffr. 14, 258 (1999).Google Scholar
7. Wright, A. F., J. Appl. Phys. 82, 2833 (1997).Google Scholar
8. McNeil, L.E., Grimsditch, M., French, R.H., J. Am. Ceram. Soc. 76, p. 1132 (1993).Google Scholar
9. Moram, M.A, Vickers, M.E., Rep. Prog. Phys. 72, 036502(2009).Google Scholar
10. Sutton, M., Mocherie, S.G.J., Greytak, T., Nagler, S.E., Bermans, L.E., Held, G.A., Stephenson, G.B., Nature 352, 608 (1991).Google Scholar
11. Barradas, N. P., Jeynes, C., Webb, R. P., Applied Physics Letters 71, 291 (1997).Google Scholar
12. Richard, M.-I., Highland, M. J., Fister, T.T., Munkholm, A., Mei, J., Streiffer, S. K., Thompson, C., Fuoss, P. H., Stephenson, G. B., Applied Physics Letters 96, 051911 (2010).Google Scholar
13. Metzger, T., Hopler, R., Born, E., Ambacher, O., Stutzmann, M., Stommer, R., Schuster, M., Gobel, H., Christiansen, S., Albrecht, M., Strunk, H. P., Philos. Mag. A77, 1013 (1998).Google Scholar
14. Fewster, P.F., X-ray scattering from semiconductors (Imperial College Press, London, 2000).Google Scholar