Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T18:47:19.372Z Has data issue: false hasContentIssue false

Characterization of Fe3O4 and Fe2O3 ferrogels prepared under uniform magnetic field

Published online by Cambridge University Press:  23 April 2012

Kamlesh J. Suthar
Affiliation:
Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL – 60439
Muralidhar K. Ghantasala
Affiliation:
Department of Mechanical and Aeronautical Engineering, Western Michigan University, 1903, West Michigan Avenue, Kalamazoo, MI – 49008
Jan Ilavsky
Affiliation:
Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL – 60439
Derrick C. Mancini
Affiliation:
Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL – 60439 Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL – 60439
Get access

Abstract

We compare the characteristics of ferrogels prepared with and without the presence of a uniform magnetic field using Fe3O4 and Fe2O3 nanoparticles immobilized in hydrogels of N-isopropylacrylamide. The spatial distribution and agglomeration of the nanoparticles within the ferrogels were investigated using ultra small angle x-ray scattering (USAXS) and transmission electron microscopy (TEM). Hydrated ferrogels were also studied for magnetization using direct current superconducting quantum interference device (DC-SQUID). Volume size distribution resulting from USAXS data of the Fe3O4-ferrogel prepared under a uniform 225 G magnetic field showed a single broad peak appreciably different from that prepared without magnetic field with three distinct peaks. Volume size distributions resulting from USAXS data of the Fe2O3-ferrogel prepared with and without the presence of a uniform magnetic field both similarly show two peaks. Nanoparticle agglomeration was also determined by analyzing TEM images of ferrogel samples. DC-SQUID measurements of Fe3O4-ferrogel prepared in the presence of a uniform magnetic field showed 9% higher magnetization compared to the Fe3O4-ferrogel prepared without magnetic field. Similarly, DC-SQUID measurements of Fe2O3-ferrogel prepared in the presence of a uniform magnetic field showed 3% higher magnetization compared to the Fe2O3-ferrogel prepared without magnetic field. Thus, the presence of a uniform magnetic field during ferrogel polymerization can enabled the enhancement of the magnetoelastic property of the ferrogel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zrinyi, M., Barsi, L. and Büki, A., Polym. Gels Netw. 5, 415 (1997).Google Scholar
2. Hernandez, R., Sarafian, A., Lopez, D. and Mijangos, C., Polymer 45, 5543 (2004).Google Scholar
3. Chatterjee, J., Haik, Y. and Chen, C., J. Appl. Polym. Sci. 91, 3337 (2004).Google Scholar
4. Lattermann, G. and Krekhova, M., Macromol. Rapid Comm. 27, 1373 (2006).Google Scholar
5. Huang, J. P., J. Phys. Chem. B 108, 13901 (2004).Google Scholar
6. Mitsumata, T., Horikoshi, Y. and Negami, K., J. Appl. Phys. 47, 7257 (2008).Google Scholar
7. Satarkar, N. S., Zhang, W., Eitel, R. E., and Hilt, J. Z., Lab on a Chip 9, 1773 (2009).Google Scholar
8. Varga, Z., Filipcsei, G. and Zrínyi, M., Polymer 47, 227 (2006).Google Scholar
9. Antonel, P. S., Jorge, G., Perez, O. E., Butera, A., Leyva, A. G. and Negri, R. M., J. Appl. Phys. 110, 043920 (2011).Google Scholar
10. Wu, J., Gong, X., Fan, Y. and Xia, H., Smar. Mat. St. 19, 105007 (2010).Google Scholar
11. Suthar, K. J., Ghantasala, M. K., Mancini, D. C. and Ilavsky, J., in SPIE NDE conference, edited by Ounaies, Z. and Li, J. (SPIE, San Diego, CA, USA, 2009), 7289, 7289D (2009)Google Scholar
12. Suthar, K. J., Ghantasala, M. K., Mancini, D. C., Mowat, J. E. and Ilavsky, J., ASME Conf. Proceedings 2010, 1, 231 (2010).Google Scholar
13. Suthar, K. J., PhD.Thesis, Western Michigan University, 2010.Google Scholar
14. Ilavsky, J., Allen, A. J., Long, G. G. and Jemian, P. R., Rev. Sci. Instrum. 73, 1660 (2002).Google Scholar
15. Ilavsky, J. and Jemian, P. R., J. Appl. Crystallogr. 42, 347 (2009).Google Scholar
16. Mourdikoudis, S., Physics of Advanced Materials Winter School, (2008) [cited 2011 December 8th]; Available from:www.mansic.eu/documents/PAM1/Mourdikoudis.pdf.Google Scholar
17. Wang, W., Yu, M., Batzill, M., He, J., Diebold, U., and Tang, J., J. Phys. Rev. B 73, 134412 (2006).Google Scholar
18. Hoang, V. V., and Khanh, B.T.H.L., J. Phys. Condens. Mat. 21, 075103 (2009).Google Scholar