Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T01:07:16.547Z Has data issue: false hasContentIssue false

Characterization of carbon dioxide separation membrane with polycation nano-layers

Published online by Cambridge University Press:  18 February 2013

Tatsuya Funaoka*
Affiliation:
Department of materials science and chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280
Yusuke Daiko
Affiliation:
Department of materials science and chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280
Atsushi Mineshige
Affiliation:
Department of materials science and chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280
Tetsuo Yazawa
Affiliation:
Department of materials science and chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280
Get access

Abstract

Ultrathin layers of positively charged poly(diallyl dimethylammonium) choloride (PDDA) and negatively charged poly(sodium 4-styrenesulfonate) (PSS) were deposited on SiO2/ polyethylene glycol hybrid membranes via layer-by-layer assembly technique, and carbon dioxide absorption/separation properties were investigated. Quartz crystal microbalance (QCM) measurements revealed that both PDDA and PSS nanocoatings have a good affinity for CO2 absorption. PDDA-deposited film shows about two times higher CO2 ideal gas selectivity compared with unmodified silica film.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Feasibility paper on new energy technologies related to global environment problems NEDO-P-8914(NEDO, Tokyo, 1990) p. 84.Google Scholar
Kuraoka, K., Tanaka, H., Yazawa, T., J. Mat. Sci. Lett. 15,1. (1996).CrossRefGoogle Scholar
Kuraoka, K., Kubo, N., Yazawa, T., J.Sol-Gel Sci Technol. 19, 515. (2000).CrossRefGoogle Scholar
Ariga, K., Hill, J. P., Ji, Q., Phys. Chem. Chem. Phys. 9, 2319 (2007).CrossRefGoogle Scholar
Decher, G. and Schlenoff, J. eds., Multilayer Thin Films. Sequential Assembly of Nanocomposite Materials, Wiley-VCH Weiheim GmbH (2003).Google Scholar
Decher, , Hong, G., Makromol, J.D., Chem. Macromol. Symp. 46, 321(1991) .CrossRefGoogle Scholar
Li., Y.; Liu, F, J. Sun. Chem. Commun. 45, 2730. (2009).CrossRefGoogle Scholar
Katagiri, K., Caruso, F. (2005) Adv. Mater. 17, 738. (2005).CrossRefGoogle Scholar
Martin, B.A., Hager, H. E., J. Appl. Phys. 65, 2630. (1989).CrossRefGoogle Scholar
Martin, B.A., Hager, H. E., J. Appl. Phys. 65, 2627. (1989).CrossRefGoogle Scholar
Viitala, T., Hautala, J.T., Vuorinen, J., Langmuir. 23, 609. (2007).CrossRefGoogle Scholar
Martin, Stephen J., Victoria Edwards Granstaff, Gregory C. Frye. Anal. Chem. 63, 2272. (1991).CrossRefGoogle Scholar
Kim, H, Lim, C, Hong, S, J. Sol-gel Sci. Techonol. 36, 213 (2005).CrossRefGoogle Scholar