Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T13:54:29.620Z Has data issue: false hasContentIssue false

Characterization of Biomaterials with NMR

Published online by Cambridge University Press:  21 February 2011

Leoncio Garrido
Affiliation:
NMR Center, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129.
Bettina Pfleiderer
Affiliation:
NMR Center, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129.
Jerome L. Ackerman
Affiliation:
NMR Center, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129.
John Moore
Affiliation:
NMR Center, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129.
Get access

Abstract

Silicone based biomaterials are characterized with NMR. Bulk spin-lattice (T1) and spin-spin (T2) relaxation times are measured in polydimethylsiloxane (PDMS) model networks and various types of implants. The T2 results seem to indicate that crosslink densities of these biomaterials are lower than those of the PDMS model networks studied. 1H chemical shift NMR imaging techniques are developed to investigate the aging (e.g., migration of free polymer, rupture due to mechanical stress, etc.) of biomaterials in vivo.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Biomedical Materials, edited by Williams, J. M., Nichols, M.F., Zingg, W. (Mater. Res. Soc. Proc., 55, Pittsburg, PA, 1986).Google Scholar
2. Gebelein, C.G., in Advances in Biomedical Polymers (Polym. Sci. Technol., 35, Plenum Press, NY, 1987).Google Scholar
3. Warrick, E.L., Pierce, O.R., et al., Rubber Chem. Technol., 52, 437 (1979).Google Scholar
4. Noort, R. van and Black, M.M., in Biocompatibility of Clinical Implant Materials, edited by D.F., Williams (2, CRC Press, Boca Raton, FL, 1981) p. 7998.Google Scholar
5. Winding, O., et al., Scand. J. Plast. Reconstr. Surg., 22, 127 (1988).Google Scholar
6. Sergott, T.J., Limoli, J.P., et al., Plast. Reconstr. Surg., 78, 104 (1986).Google Scholar
7. Refojo, M.F., Roldan, M., et al., J. Biomed. Mat. Res., 19, 643 (1985).Google Scholar
8. Hartman, L.C., Benette, R.W., et al., J. Biomed. Mat. Res., 22, 475 (1988).Google Scholar
9. Pierce, W.S., Boretos, J.W., J. Biomed. Mat. Res., 17, 389 (1983).CrossRefGoogle Scholar
10. Chin, H.P., Harrison, E.C., et al., Circulation Suppl., 43, 51 (1971).Google Scholar
11. Chan, S., J. Biomed. Mat. Res., 7, 485 (1973).Google Scholar
12. Noort, R. van, Black, M.M. and Harris, B., J. Mat. Sci., 14, 197 (1979).Google Scholar
13. Folland, R., et al., J. Polym. Sci., Polym. Phys. Ed., 16, 1041 (1978).CrossRefGoogle Scholar
14. Cohen-Addad, J.P., Viallat, A. and Huchot, P., Macromolecules, 20, 2146 (1987).Google Scholar
15. Cohen-Addad, J.P., J. Chem. Phys., 76, 2744 (1982).Google Scholar
16. Sergott, T.J. and Vistnes, L.M., Plast. Reconstr. Surg., 79, 331 (1987).Google Scholar
17. Dixon, W.T., Radiology, 153, 189 (1984).Google Scholar
18. Pykett, I.L. and Rosen, B.R., Radiology, 149, 197 (1983).Google Scholar
19. Bottomley, P.A., et al., Proc. Natl. Acad. Sci. USA, 81, 6856 (1984).Google Scholar
20. Mark, J.E., Adv. Polym. Sci., 44, 1 (1982).Google Scholar