No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
Nanocrystalline copper/hydrogenated amorphous carbon films have been deposited on Si substrates at the floating potential using a distributed electron cyclotron resonance microwave plasma reactor. In this deposition technique, the microwave plasma-enhanced chemical vapor deposition process of carbon from argon-methane or argon-acetylene mixtures of various compositions was associated with the sputter deposition of copper from a copper target. The total pressure was fixed at 0.13 Pa. For deposition, the substrates mounted on a water-cooled substrate holder were maintained at ambient temperature. The composition of films determined by Rutherford backscattering spectroscopy, energy recoil detection analyses and nuclear reaction analyses was investigated as a function of the gas phase composition. The structure of films was identified by X-ray diffraction (XRD) techniques and the size of copper crystallites incorporated in the amorphous carbon matrix was deduced from XRD data. The magnitude of residual stresses developed in these films was calculated from the radius of curvature of film/substrate samples determined by profilometry. The residual stress values were found to be nearly independent on the composition of films and deposition parameters.