Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:44:06.044Z Has data issue: false hasContentIssue false

Characteristics of Dopant Activation by Sequential Lateral Solidification (SLS)

Published online by Cambridge University Press:  01 February 2011

Yong-Hae Kim
Affiliation:
Basic Research Lab., Electronics and Telecommunications Research Institute, 161 Gajeong-Dong, Yuseong-Gu, Daejeon, 305–350, Korea
Choong-Yong Sohn
Affiliation:
Basic Research Lab., Electronics and Telecommunications Research Institute, 161 Gajeong-Dong, Yuseong-Gu, Daejeon, 305–350, Korea
Choong-Heui Chung
Affiliation:
Basic Research Lab., Electronics and Telecommunications Research Institute, 161 Gajeong-Dong, Yuseong-Gu, Daejeon, 305–350, Korea
Young-Wook Ko
Affiliation:
Basic Research Lab., Electronics and Telecommunications Research Institute, 161 Gajeong-Dong, Yuseong-Gu, Daejeon, 305–350, Korea
Jin Ho Lee
Affiliation:
Basic Research Lab., Electronics and Telecommunications Research Institute, 161 Gajeong-Dong, Yuseong-Gu, Daejeon, 305–350, Korea
Get access

Abstract

The characteristics of dopant activation by sequential lateral solidification in poly-Si films is investigated using sheet resistance measurement and Raman measurement. Sheet resistance of n+ and p+ doped poly-Si films decreases exponentially as the laser energy increases. The minimum sheet resistance of n+ doped poly-Si films is 150 Ω/□ which is near to that of rapid thermal annealing (RTA) while the minimum sheet resistance of p+ doped poly-Si films is 180 Ω/□ which is less than a half to that of RTA. The sheet resistance of n+ and p+ doped poly-Si increases as the laser energy increases when the laser energy is above 573 mJ/cm2 at which the nucleation occurs. Raman signal of n+ doped poly-Si films shows single peak at 515 cm-1 with all laser energy and has maximum intensity at 566 mJ/cm2 laser energy. Raman signal of p+ doped poly-Si films shows single peak below 413 mJ/cm2 laser energy and double peak above 444 mJ/cm2 laser energy where the fully melting of p+ doped poly-Si film occurs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brotherton, S. D., Ayres, J. R., Edwards, M. J., Fisher, C. A., Glaister, C., Gowers, J. P., McCullock, D. J., Trainor, M., Thin Solid Films 337, 188 (1999).10.1016/S0040-6090(98)01176-6Google Scholar
2. Im, J. S., Kim, H. J., Thompson, M. O., Appl. Phys. Lett. 63, 1969 (1993).10.1063/1.110617Google Scholar
3. Voutsas, A. T., Appl. Surf. Sci. 9602, 1 (2003).Google Scholar
4. Crowder, M. A., Moriguchi, M., Mitani, Y., Voutsas, A. T., Thin Solid Films 427, 101 (2003).10.1016/S0040-6090(02)01147-1Google Scholar
5. Kerrien, G., Hernandez, M., Laviron, C., Sarnet, T. Debarre, D., Noguchi, T., Zahorski, D., Venturini, J., Semeria, M. N. Boulmer, J., Appl. Surf. Sci. 9606, 1 (2003).Google Scholar
6. Kerrien, G., Boulmer, J., Debarre, D., Bouchier, D., Grouillet, A., Lenoble, D., Appl. Surf. Sci. 186, 45 (2002).10.1016/S0169-4332(01)00623-7Google Scholar
7. Lin, K. C., Peng, Y. C., Wang, L. M., Wang, W. T., AM-LCD ′01, 143 (2001).Google Scholar
8. Giust, G. K., Sigmon, T. W., IEEE Trans. Electro Devices 45, 925 (1998).10.1109/16.662804Google Scholar
9. Al-Nuaimy, E. A., Marshall, J. M., Appl. Phys. Lett. 69, 3857 (1996).10.1063/1.117128Google Scholar
10. Tseng, C. H., Lin, C. W., Teng, T. H., Chang, T. K., Cheng, H C., Chin, A., Solid-State Electron. 46, 1085 (2002).10.1016/S0038-1101(02)00046-1Google Scholar
11. Higashi, S., Ando, N., Kamisako, K., Sameshima, T., Jpn. J. Appl. Phys. 40, 731 (2001).10.1143/JJAP.40.731Google Scholar
12. Lengsfeld, P., Nickel, N. H., J. Non-Cryst solids 299–302, 778 (2002).10.1016/S0022-3093(01)00982-6Google Scholar
13. Lengsfeld, P., Nickel, N. H., Fuhs, W., Appl. Phys. Lett. 76, 1680 (2000).10.1063/1.126134Google Scholar
14. Nickel, N. H., Lengsfeld, P., Sieber, I., Phys. Rev. B 61, 15558 (2000).10.1103/PhysRevB.61.15558Google Scholar
15. Donnelly, D. W., Covington, B. C., Appl. Phys. Lett. 78, 2000 (2001).10.1063/1.1359784Google Scholar
16. Secco d'Aragona, F., J. Electrochem. Soc. 119, 948 (1972).10.1149/1.2404374Google Scholar
17. Fogarassy, E., Fuchs, c., De Unamuno, S., siffert, P, Appl. Surf. Sci. 43, 316 (1989).10.1016/0169-4332(89)90232-8Google Scholar