No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
The crystallization of disordered surface layers on highly oriented pyrolytic graphite (HOPG) have been studied by Rutherford backscattering spectrometry (RBS) and channeling techniques. Disordered layers (~1000–3000Å thick) are produced on the surface of HOPG by the implantation of various ions. The disordered layers are regrown by thermal annealing of the samples in an inert environment. Isochronal anneals reveal two distinct regrowth processes: one, a rapid process of low activation energy (Ea ~ 0.15 eV) which is observed primarily in regions where the disorder is sufficient to prevent the channeling of the ions but insufficient to totally destroy the graphitic structure. This low activation energy may indicate annealing of the damage by migration of interstitials where the interstitials are the knock-on carbon atoms produced by the primary ions. A regrowth process with higher activation energy (Ea ~ 2.0 eV) occurs primarily in regions where the disorder is close to the saturation-disorder produced by ion implantation. Both the regrowth processes are epitaxial in nature and the epitaxial nature of the process may explain the much lower activation energy for 3D AB stacking as measured in ion implanted graphite when compared with results on the bulk graphitization of pyrocarbons.