Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:33:42.290Z Has data issue: false hasContentIssue false

Channeling Measurements on Deuterium Implanted Silicon

Published online by Cambridge University Press:  28 February 2011

B. Bech Nielsen*
Affiliation:
Institute of Physics, University of Aarhus DK-8000 Aarus C, Denmark
Get access

Abstract

The channeling technique has been used to study the lattice location of deuterium ion-implanted into silicon. Compared to earlier measurements by Picraux and Vook, the temperature range has been extended from 30 to 500 K, and the dose has been decreased down to ≃ 8 × 1014 D/cm2. The implantation was performed at 30 K gnd at an energy of 10 keV. The channeling analysis was done using the d(3 He,p)4 He nuclear reaction. Angular scans were measured along the <100>, <110>, <111> axis and the {100}, {110}, {111} planes, Experiments were carried out on the implanted sample (30K) and after annealing to 200 and 500 K. In the as-implanted sample, 80% of the deuterium is located close to the bond center, whereas the remaining 20% is placed at the tetrahedral site. The deuterium sites change after annealing to 200 and 50OK, and the nature of these annealings stages will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spear, W.E. and LeComber, P.G., Solid State Commun. 17, 1193 (1975); Phil.Mag..33, 935 (1976)Google Scholar
2. Benton, J.L., Doherty, C.J., Ferris, S.D., Flamm, D.L., Kimerling, L.C., and Leamy, H.J., Appl.Phys.Lett. 36, 670 (1980)CrossRefGoogle Scholar
3. Dubé, C. and Hanoka, J.I., Appl.Lett. 45, 1135 (1984)CrossRefGoogle Scholar
4. Pearton, S.J. and Tavendale, A.J., Phys.Rev.B 26. 7105 (1982)CrossRefGoogle Scholar
5. Pankove, J.I., Carlson, D.E., Berkeyheiser, J.E., and Wance, R.O., Phys.Rev.-Lett. 24, 2224 (1983)Google Scholar
6. Pankove, J.I., Wance, R.O., and Berkeyheiser, J.E., Appl.Phys.Lett. 45, 1100 (1984)Google Scholar
7. Stein, H.J., J.Electr.Mater. 4, 159 (1975)CrossRefGoogle Scholar
8. Stein, H.J., Phys.Rev.Lett. 43, 1030 (1979)CrossRefGoogle Scholar
9. Watkins, G.D., J.Phys.Soc.Japan 18, 22 (1963)Google Scholar
10. Watkins, G.D. and Troxell, J.R., Phys.Rev.Lett. 44, 593 (1980)Google Scholar
11. Picraux, S.T. and Vook, F.L., Phys.Rev.B 18, 2066 (1978)Google Scholar
12. Singh, V.A., Weigel, C., Corbett, J.W., and Roth, L.M., phys.stat.sol.(b) 81, 637 (1977); Phys.Lett.65a, 261 (1978)Google Scholar
13. Mainwood, A. and Stoneham, A.M., Physica 116B, 101 (1983); J.Phys.C 17, 2513 (1984)Google Scholar
14. Corbett, J.W., Sahu, S.N., Shi, T.S., and Snyder, L.C., Phys.Lett. 93A, 303 (1983)Google Scholar
15. Rodriguez, C.O., Jaros, M., and Brand, S., Solid State Commun. 31, 43 (1979)Google Scholar
16. See, e.g., Fritsche, H., Tsai, C.C., and Persans, P., Solid State Tech. 21 55 (1978)Google Scholar
17. CRC Handbook of Chemistry and Physics, 62.ed.; ed.Weast, R.C. and Astle, M.J. (CRC Press, inc., Boca Raton, Florida, 1981) p.F-178Google Scholar
18. Besenbacher, F., Bottiger, J., and Myers, S.M., J.Appl.Phys. 53, 3536 (1982)CrossRefGoogle Scholar
19. Nielsen, B. Bech and Andersen, J.U.; (to be published)Google Scholar
20. Doyle, P.A. and Turner, P.S., Acta Crystallogr.Sec.A 24, 390 (1968)Google Scholar
21. Nielsen, B. Bech, to be publishedGoogle Scholar
22. van Wieringen, A. and Warmoltz, N., physica 22, 849 (1956)Google Scholar
23. Cheng, L.J., Corelli, J.C., Corbett, J.W., and Watkins, G.D., Phys.Rev. 152, 761 (1966)Google Scholar
24. See, e.g., Corbett, J.W., Karins, J.P., and Tan, T.Y., Nucl.Instrum.Methods 182/183 457 (1981)CrossRefGoogle Scholar