Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:24:49.875Z Has data issue: false hasContentIssue false

Chalcopyrite Magnetic Semiconductors: An AB–Initio Study of Their Structural, Electronic and Magnetic Properties

Published online by Cambridge University Press:  21 March 2011

S. Picozzi
Affiliation:
INFM – Dip. Fisica, Univ. L'Aquila, 67010 Coppito (L'Aquila), Italy
A. Continenza
Affiliation:
INFM – Dip. Fisica, Univ. L'Aquila, 67010 Coppito (L'Aquila), Italy
W. T. Geng
Affiliation:
Dept. of Phys. and Astron. and Materials Research Center Supported by the US National Science Foundation, Northwestern University, Evanston, IL 60208 (U.S.A.)
Y. J. Zhao
Affiliation:
Dept. of Phys. and Astron. and Materials Research Center Supported by the US National Science Foundation, Northwestern University, Evanston, IL 60208 (U.S.A.)
A. J. Freeman
Affiliation:
Dept. of Phys. and Astron. and Materials Research Center Supported by the US National Science Foundation, Northwestern University, Evanston, IL 60208 (U.S.A.)
Get access

Abstract

Stimulated by recent experimental observations of room{temperature ferromagnetism of MnxCd1−xGeP2, we investigate the structural, electronic and magnetic properties of these systems as a function of Mn concentration by means of first–principles density-functional-theory-based codes. Moreover, we investigate the effect of the anion substitution (P vs As) in Mn-rich chalcopyirites. Our calculations indicate that the antiferromagnetic alignment is the most stable ordering for all the systems studied, at variance with that experimentally reported. Moreover, we find that there is a slight reduction of the total magnetic moment per Mn atom from ∼5 µB in all the Cd-rich P-based chalcopyrites to ∼4 µB in the Mn–rich MnGeP2 and MnGeAs2 systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ohno, H., Science 281, 951 (1998); Y: Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, Nature (London), 402, 790 (1999).Google Scholar
[2] Medvedkin, G. A., Ishibashi, T., Nishi, T., Hayata, K., Hasegawa, Y. and Sato, K., Jpn, J. Appl. Phys. 39, L949 (2000).Google Scholar
[3] Wimmer, E., Krakauer, H., Weinert, M. and Freeman, A. J., Phys. Rev. B 24, 864 (1981); H.J.F.Jansen and A.J.Freeman, Phys. Rev. B 30, 561 (1984).Google Scholar
[4] Delley, B., J. Chem. Phys. 113, 7756 (2000); B. Delley, ibid. 92(1), 508 (1990).Google Scholar
[5] Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).10.1103/PhysRevLett.77.3865Google Scholar
[6] Hedin, L. and Lundqvist, B. I., J. Phys. C. 4, 2062 (1971).Google Scholar
[7] Zhao, Yu-Jun, Geng, W. T., Park, K. T. and Freeman, A. J., Phys. Rev. B (accepted).Google Scholar
[8] Continenza, A., Picozzi, S., Geng, W. T. and Freeman, A. J., submitted to Phys. Rev. B.Google Scholar
[9] Jaffe, J. E. and Zunger, A., Phys. Rev. B 29, 1882 (1984); S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 59, 5415 (1973).10.1103/PhysRevB.29.1882Google Scholar
[10] Zhao, Y. J., Geng, W. T., Freeman, A. J. and Oguchi, T., to be published on Phys. Rev. B.Google Scholar