Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T00:26:20.238Z Has data issue: false hasContentIssue false

Cathodoluminescence Study of Orientation Patterned GaAs Crystals for Nonlinear Optical Frequency Conversion by Quasi-Phase-Matching

Published online by Cambridge University Press:  01 February 2011

Hector Angulo
Affiliation:
hectando@gmail.com, Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Manuel Avella
Affiliation:
manuel@fmc.uva.es, Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Oscar Martínez
Affiliation:
oscar@fmc.uva.es, Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Juan Jimenez
Affiliation:
jimenez@fmc.uva.es, United States
Candace Lynch
Affiliation:
candace.lynch@hanscom.af.mil, Air Force Research Laboratory, Sensors Directorate, Hanscom, Massachusetts, United States
David Bliss
Affiliation:
david.bliss@hadscome.af.mil, Air Force Research Laboratory, Sensors Directorate, Hanscom, Massachusetts, United States
Get access

Abstract

Orientation patterned (OP)-GaAs crystals show promise for use in tunable coherent light sources in the infrared (IR) and terahertz (THz). These structures consist of an alternating array of [001]/[00-1] oriented domains grown by hydride vapor phase epitaxy (HVPE). Material characteristics concerning the propagation losses, the crystal dimensions, and the grating size must be taken into account to implement optical devices for specific wavelength ranges and operating modes (CW or pulsed). The analysis of the main factors contributing to optical loss in the OP crystals is a crucial step toward their use in many promising applications. We present a cathodoluminescence study, where the main defects and their distribution over the OP-GaAs crystals are revealed, with special emphasis paid to the properties of the domain walls.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gérard, , and Lallier, E., Appl. Phys. Lett. 79, 904 (2001).Google Scholar
2. Schaar, J.E., Vodopyanov, K.L., Kuo, P.S., Fejer, M.M., Yu, X., Lin, A., Harris, J.S., Bliss, D., Lynch, C., Kozlov, V.G., and Hurlbut, W., IEEE J. Sel. Top. Quantum Electron. 14, 35 (2008).Google Scholar
3. Lynch, C., Bliss, D.F., Zens, T., Lin, A., Harris, J.S., Kuo, P.S., and Fejer, M.M., J. Crystal Growth, in press. doi:10.1016/j.jcrysgro.2008.08.050.Google Scholar
4. Bliss, D.F., Lynch, C., Weyburne, D., O'Hearn, K., and Bailey, J.S., J. Cryst. Growth 287, 673 (2006).Google Scholar
5. Faye, D., Grisard, A., Lallier, E., Gérard, B., Avella, M., and Jimenez, J., Appl. Phys. Lett. 93, 151115 (2008).Google Scholar
6. Johnson, E.J., Kafalas, J.A., and Davies, R.W.; J. Appl. Phys. 54, 204 (1983).Google Scholar
7. Brammertz, G., Mols, Y., Degroote, S., Motsnyi, V., Leys, M., Borghs, G. and Caymax, M., J. Appl. Phys. 99, 093514 (2006).Google Scholar
8. Harrison, I., Pavesi, L., Henini, M., and Johnston, D., J. Appl. Phys. 75, 3151 (1994).Google Scholar
9. Shin, K.C., Kwark, M.H., Choi, M.H., Oh, M.H., and Tak, Y.B., J. Appl. Phys. 65, 736 (1989).Google Scholar
10. Yu, P.W., Sischer, D.W., and Sizelove, J.R., Semicond. Sci. Technol. 7, 556 (1992).Google Scholar
11. Chu, S.N.G., Nakahara, S., Pearton, S.J., Boone, T., and Vernon, S.M.; J. Appl. Phys. 64, 2981 (1988).10.1063/1.341561Google Scholar
12. Madelung, O., Osten, W. v. d., and Rössler, U., Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds, Springer-Verlag, Berlin, 1987.Google Scholar