Published online by Cambridge University Press: 25 February 2011
Ion implantation is emerging as a versatile tool for the control of carrier lifetime in silicon. We present results on the use of argon and proton implantations to reduce lifetime. Particle energies used imply submicron penetration depths into the silicon. We find that within the first micrometer from the surface, the generation lifetime can be reduced by several orders of magnitude, and varies inversely with dose. A change in doping concentration was found only at the highest dose used (1014 cm−2). Effects of the implantations on surface generation velocity and oxide charges were also studied.