Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T00:56:20.456Z Has data issue: false hasContentIssue false

Carrier Dynamics in MOVPE-Grown Bulk InGaAsNSb Materials and Epitaxial Lift-Off GaAs Double Heterostructures for Multi-junction Solar Cells

Published online by Cambridge University Press:  08 April 2014

Yongkun Sin
Affiliation:
Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, CA 90245
Stephen LaLumondiere
Affiliation:
Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, CA 90245
Nathan Wells
Affiliation:
Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, CA 90245
Zachary Lingley
Affiliation:
Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, CA 90245
Nathan Presser
Affiliation:
Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, CA 90245
William Lotshaw
Affiliation:
Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, CA 90245
Steven C. Moss
Affiliation:
Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, CA 90245
Tae Wan Kim
Affiliation:
Electrical and Computer Engineering Dept., University of Wisconsin – Madison, Madison, WI 53706
Kamran Forghani
Affiliation:
Electrical and Computer Engineering Dept., University of Wisconsin – Madison, Madison, WI 53706
Luke J. Mawst
Affiliation:
Electrical and Computer Engineering Dept., University of Wisconsin – Madison, Madison, WI 53706
Thomas F. Kuech
Affiliation:
Chemical and Biological Engineering Dept., University of Wisconsin – Madison, Madison, WI 53706
Rao Tatavarti
Affiliation:
MicroLink Devices Inc., Niles, IL 60714
Andree Wibowo
Affiliation:
MicroLink Devices Inc., Niles, IL 60714
Noren Pan
Affiliation:
MicroLink Devices Inc., Niles, IL 60714
Get access

Abstract

High performance and cost effective multi-junction III-V solar cells are attractive for satellite applications. High performance multi-junction solar cells are based on a triple-junction design that employs an InGaP top-junction, a GaAs middle-junction, and a bottom-junction consisting of a 1.0 – 1.25 eV-material. The most attractive 1.0 – 1.25 eV-material is the lattice-matched dilute nitride such as InGaAsN(Sb). A record efficiency of 43.5% was achieved from multi-junction solar cells including dilute nitride materials [1]. In addition, cost effective manufacturing of III-V triple-junction solar cells can be achieved by employing full-wafer epitaxial lift-off (ELO) technology, which enables multiple substrate re-usages. We employed time-resolved photoluminescence (TR-PL) techniques to study carrier dynamics in both pre- and post-ELO processed GaAs double heterostructures (DHs) as well as in MOVPE-grown bulk dilute nitride layers lattice matched to GaAs substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wiemer, M., Sabnis, V., and Yuen, H., Proceedings of SPIE, 8108, 810804–1, 2011.CrossRefGoogle Scholar
Konagai, M., et al. ., “High efficiency GaAs thin film solar cells by peeled film technology,” J. Cryst. Growth 45, p. 277, 1978.CrossRefGoogle Scholar
Yablonovitch, E., et al. ., “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, p. 2419, 1990.CrossRefGoogle Scholar
Schermer, J., et al. ., “Epitaxial Lift-Off for large area thin film III/V devices,” Phys. Stat. Sol. (a) 202, pp. 501508, 2005.CrossRefGoogle Scholar
Tatavarti, Rao, Hillier, G., Dzankovic, A., Martin, G., Tuminello, F., Navaratnarajah, R., Du, G., Vu, D.P., and Pan, N., Proc. of 33rd IEEE PVSC conference, San Diego, 2008.Google Scholar
Tatavarti, Rao, Hillier, G., Martin, G., Wibowo, A., Navaratnarajah, R., Tuminello, F., Hertkorn, D., Disabb, M., Youtsey, C., McCallum, D., and Pan, N., “Lightweight, low cost InGaP/GaAs dual-junction solar cells on 100-mm epitaxial liftoff (ELO) wafers,” Proc. of 34th IEEE PVSC conference, Philadelphia, p. 2065, 2009.Google Scholar
Tatavarti, Rao, Wibowo, A., Martin, G., Tuminello, F., Youtsey, C., Hillier, G., Pan, N., Wanlass, M.W., and Romero, M., “InGaP/GaAs/InGaAs inverted metamorphic solar cells on 4” epitaxial lifted off wafers,” Proc. of 35th IEEE PVSC conference, Philadelphia, p. 2125, 2010.Google Scholar
Jackrel, D. B., Bank, S. R., Yuen, H. B., Wistey, M. A., and Harris, J. S., “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101, 114916, 2007.CrossRefGoogle Scholar
Sin, Y., LaLumondiere, S., Lotshaw, W. T., Moss, S. C., Garrod, T., Kim, T. W., Kirch, J., Mawst, L. J., Proc. of SPIE, 7933, 79330H, 2011.CrossRefGoogle Scholar
Kim, T. W., Garrod, T. J., Kim, K., Lee, J. J., LaLumondiere, S. D., Sin, Y., Lotshaw, W. T., Moss, S. C., Kuech, T. F., Tatavarti, Rao, and Mawst, L. J., Appl. Phys. Lett. 100, 121120, 2012.CrossRefGoogle Scholar
Volz, K., Lackner, D., Nemeth, I., Kunert, B., Stolz, W., Baur, C., Dimroth, F., and Bett, A. W., “Optimization of annealing conditions of (GaIn)(NAs) for solar cell applications,” J. Cryst. Growth 310, p. 22222228, 2008.CrossRefGoogle Scholar
Garrod, T., Kirch, J., Kim, T., Konen, J., Mawst, L. J., and Kuech, T.F., “Narrow band gap GaInNAsSb material grown by metal organic vapor phase epitaxy (MOVPE) for solar cell applications,” J. Cryst.Growth, 2010.Google Scholar
Geisz, J. F. and Friedman, D. J., “III–N–V semiconductors for solar photovoltaic applications,” Semicond. Sci. Technol. 17, p. 769777, 2002.CrossRefGoogle Scholar
Fehse, R, Tomic´, S., Adams, A. R., Sweeney, S. J., O’Reilly, E. P., Andreev, A., and Riechert, H., “A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers ,” IEEE J. Select. Topics Quantum Electron. 8, p. 801810, 2002.CrossRefGoogle Scholar