Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:43:25.708Z Has data issue: false hasContentIssue false

Carbon Nanomaterials for Energy Efficient Green Electronics

Published online by Cambridge University Press:  27 February 2013

Anupama B. Kaul*
Affiliation:
Division of Electrical, Communications and Cyber Systems, Engineering Directorate, National Science Foundation, Arlington VA 22203
*
Get access

Abstract

Developing energy efficient electronics or green electronics is an area that is largely driven by the performance limitations of scaled Si-based CMOS due to the exceptionally high power dissipation and high leakage currents arising in such devices at nanoscale dimensions. It is clear now that Si-based CMOS has been stretched over the past several decades to the point that further miniaturization will make such simple size scaling non-sustainable in the future. New materials and technologies are thus vigorously being explored beyond Si, in order to overcome performance limitations from ultra-miniaturized Si-CMOS. Among these materials, carbon-based nanostructures such as graphene and carbon nanotubes are being considered as viable alternatives to Si-CMOS to enable energy efficient green electronics. Novel architectures for enabling low-power, energy-efficient computation are currently being explored, which include tunneling field-effect-transistors (TFETs), as well as nano-electro-mechanical-systems (NEMS) due to their abrupt ON/OFF transitions, low OFF state currents and high speed operation. In this paper, an overview of carbon nanomaterials is presented and the role they play in enabling energy efficient TFETs and NEMS is also highlighted. Finally, the emergence of a new class of 2D systems beyond graphene is discussed such as MoS2, which may open up new avenues for exploration and enabling applications in electronics.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

(invited paper)

References

references

International Technology Roadmap for Semiconductors; http://www.itrs.net/reports.html, 2007 Edition.Google Scholar
Avouris, P., Chen, Z., and Perebeinos, V., Nat. Nanotechnol. 2, 605 (2007).10.1038/nnano.2007.300CrossRefGoogle Scholar
Cao, Q. and Rogers, J., Adv. Mater 21, 29 (2009).CrossRefGoogle Scholar
Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C., Science 294, 1317 (2001).CrossRefGoogle Scholar
Zhang, Z., Liang, X., Wang, S., Yao, K., Hu, Y., Zhu, Y., Chen, Q., Zhou, W., Li, Y., Yao, Y., Zhang, J., and Peng, L. M., Nano Lett. 7, 3603 (2007).CrossRefGoogle Scholar
Dresselhaus, M. S., Dresselhaus, G., Avouris, P. (Eds.), Carbon Nanotubes, Springer, Berlin, 2001.CrossRefGoogle Scholar
Liao, L., Bai, J., Cheng, R., Zhou, H., Liu, L., Huang, Y. and Duan, X., Nano Lett. 12, 2653 (2012).CrossRefGoogle Scholar
Lin, Y., Valdes-Garcia, A., Han, S., Farmer, D. B., Meric, I., Sun, Y., Wu, Y., Dimitrakopoulos, C., Grill, A., Avouris, P., Jenkins, K. A., Science 332, 1294 (2011).CrossRefGoogle Scholar
Li, H., Xu, C., Srivastava, N., and Banerjee, K., IEEE Trans. Elect. Dev. 56, 1799 (2009).CrossRefGoogle Scholar
Jeong, H. M., et al. . Nano Lett. 11, 2472 (2011).CrossRefGoogle Scholar
Lu, F., Gu, L., Meziani, M. J., Wang, X., Luo, P. G., Veca, L. M., Cao, L., and Sun, Y. P., Adv. Mater. 21, 139 (2009).CrossRefGoogle Scholar
Kim, K. S., Zhao, Y., et al. . Nature 457, 706 (2009).CrossRefGoogle Scholar
Wei, P., Bao, W., Pu, Y., Lau, C. N., and Shi, J., Phys. Rev. Lett. 102, 166808 (2009).CrossRefGoogle Scholar
Miao, X., Tongay, S., Petterson, M. K., Berke, K., Rinzler, A. G., Appleton, B. R., and Hebard, A. F., Nano Lett. 12, 2745 (2012).CrossRefGoogle Scholar
Dang, X., Yi, H., Ham, M., Qi, J., Yun, D., Ladewski, R., Strano, M. S., Hammond, P. T., and Belcher, A. M., Nature Nano. 6, 377 (2011).CrossRefGoogle Scholar
Homma, Y., Chiashi, S., and Kobayashi, Y., Reports on Progress in Physics 72, 066502 (2009).CrossRefGoogle Scholar
Vakil, A. and Engheta, N., Science 332, 1291 (2011).CrossRefGoogle Scholar
Jang, J. E., Cha, S. N., Choi, Y. J., Kang, D. J., Butler, T. P., Hasko, D. G., Jung, J. E., Kim, J. M., and Amaratunga, G. A. J., Nat. Nanotech. 3, 26 (2008).CrossRefGoogle Scholar
Loh, O. Y. and Espinosa, H. D., Nature Nano. 7, 283 (2012).CrossRefGoogle Scholar
Kaul, A. B., Wong, E. W., Epp, L., and Hunt, B. D., Nano Lett. 6, 942 (2006).CrossRefGoogle Scholar
Kaul, A. B., Khan, A., Bagge, L., Megerian, K. G., LeDuc, H. G., and Epp, L., Appl. Phys. Lett. 95, 093103, (2009).CrossRefGoogle Scholar
Kaul, A. B., Megerian, K., von Allmen, P., Baron, R. L., Nanotechnology 20, 075303 (2009)CrossRefGoogle Scholar
Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., and Ruoff, R. S., Science 287, 637 (2000).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J. W., and Hone, J., Science 321, 385 (2008).CrossRefGoogle Scholar
Kaul, A. B., Megerian, K. G., Jennings, A., and Greer, J. R., Nanotechnology 21, 315501 (2010).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).CrossRefGoogle Scholar
Han, M., Ozyilmaz, B., Zhang, Y., and Kim, P., Phys. Rev. Lett. 98, 206805 (2007).10.1103/PhysRevLett.98.206805CrossRefGoogle Scholar
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162 (1985).CrossRefGoogle Scholar
Bernstein, K., Cavin, R., Porod, W., Seabaugh, A., and Welser, J., Proc. IEEE 98, 2169 (2010).10.1109/JPROC.2010.2066530CrossRefGoogle Scholar
Ionescu, A. and Riel, H., Nature 479, 329 (2011).CrossRefGoogle Scholar
Ekinci, K. L. and Roukes, M. L., Review of Scientific Instruments 76, 061101 (2005).CrossRefGoogle Scholar
The Climate Group. “SMART 2020: Enabling the low carbon economy in the information age, ” Technical report, The Climate Group, 2008.Google Scholar
Hu, C., IEDM Tech. Digest, 16.1.1 (2010).Google Scholar
Choi, W. Y., Park, B.-G., Lee, J. D. and Liu, T.-J. K., IEEE Electron Dev. Lett. 28, 743 (2007).CrossRefGoogle Scholar
Seabaugh, A. and Zhang, Q., Proc. IEEE 98, 2095 (2010).10.1109/JPROC.2010.2070470CrossRefGoogle Scholar
Tomioka, K., Appl. Phys. Lett. 98, 083114, (2011).CrossRefGoogle Scholar
Appenzeller, J., Lin, Y.-M, Knoch, J. and Avouris, P., Phys. Rev. Lett. 93, 196805 (2004).CrossRefGoogle Scholar
Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C. L., and Lieber, C. M., Science 289, 94 (2000).10.1126/science.289.5476.94CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A., Nature Nano 6, 147 (2011).CrossRefGoogle Scholar
NSF/AFOSR Workshop on 2D Materials and Devices Beyond Graphene, May 2012: http://nsf2dworkshop.rice.edu/ Google Scholar