Published online by Cambridge University Press: 28 February 2011
The effects of light saturation on the properties of undoped a-Si:H films were studied by a new capacitance profiling technique which can be used to directly determine changes in the dangling bond density of states near midgap. Coplanar conductivity and capacitance vs. temperature measurements save the changes in activation energies for electrical conductivity. These studies indicate that, while substantial increases in the dangling bond densities are observed for most samples, the detailed behavior of the light induced changes in these films are inconsistent with the creation of such defects by breaking weak valence band tail states.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.