Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:54:01.110Z Has data issue: false hasContentIssue false

BYZO Nanopancakes in HTS YBa2Cu3O7-δ Films: Effect on Critical Current Density and Nonlinear Microwave Response

Published online by Cambridge University Press:  12 October 2011

Victor S. Flis
Affiliation:
G. V. Kurdyumov Institute for Metal Physics, 36 Vernadsky Blvd., Kiev, 03142, Ukraine
Vassily L. Svetchnikov
Affiliation:
G. V. Kurdyumov Institute for Metal Physics, 36 Vernadsky Blvd., Kiev, 03142, Ukraine
Oleksa A. Kalenyuk
Affiliation:
G. V. Kurdyumov Institute for Metal Physics, 36 Vernadsky Blvd., Kiev, 03142, Ukraine
Alexander L. Kasatkin
Affiliation:
G. V. Kurdyumov Institute for Metal Physics, 36 Vernadsky Blvd., Kiev, 03142, Ukraine
Viacheslav O. Moskaliuk
Affiliation:
G. V. Kurdyumov Institute for Metal Physics, 36 Vernadsky Blvd., Kiev, 03142, Ukraine
Andrey I. Rebikov
Affiliation:
G. V. Kurdyumov Institute for Metal Physics, 36 Vernadsky Blvd., Kiev, 03142, Ukraine
Constantin G. Tretiatchenko
Affiliation:
G. V. Kurdyumov Institute for Metal Physics, 36 Vernadsky Blvd., Kiev, 03142, Ukraine
Volodymyr M. Pan
Affiliation:
G. V. Kurdyumov Institute for Metal Physics, 36 Vernadsky Blvd., Kiev, 03142, Ukraine
Get access

Abstract

We have studied nanostructure, electric transport and microwave properties of HTS YBa2Cu3O7-δ films prepared by PLD on LaAlO3 single crystal substrates using targets doped with BaZrO3. Two essentially different types of nanoparticles are revealed by HREM: “nanopancakes” and “nanorods”. Tiny nanopancakes are 1-4 nm in ab-plane and only few atomic layers thick. Nanopancakes are surrounded with deformed area and numerous dislocations. Such nanoparticles seem to be responsible for jc enhancement. Nanopancakes evolve to much wider and longer nanorods at higher substrate temperatures and/or slower deposition. There are no dislocations around nanorods. Elastic strains are avoided due to slight inclination of the c-axis. Dislocations around nanopancakes are suggested to be additional flux pinning centers and retard thermally activated relaxation of the dislocation nanostructure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Song, X., Chen, Z., Kim, S. et al. , Appl. Phys. Lett. 88, 212508 (2006).Google Scholar
2. Gutiérrez, J., Llordés, A., Gázquez, J. et al. , Nature Mater. 6, 367373 (2007).Google Scholar
3. Kim, S. I., Gurevich, A., Song, X. et al. , Supercond. Sci. Technol. 19, 968 (2006).Google Scholar
4. Puig, T., Gutiérrez, J., Pomar, A. et al. , Supercond. Sci. Technol. 21, 034008 (2008).Google Scholar
5. Gutierrez, J., Palau, A., Durrellet, J. H. et al. , Phys. Rev B 79, 064526 (2009).Google Scholar
6. Pan, V. M., Pashitskii, E. A., Ryabchenko, S. M., Komashko, V. A., Pan, A. V., Dou, S. X., Kasatkin, A. L., Semenov, A. V., Tretiatchenko, C. G., and Fedotov, Yu. V., IEEE Trans. Appl. Supercond. 13, 37143717 (2003).Google Scholar
7. Cherpak, Y. V., Komashko, V. A., Pozigun, S. A., Semenov, A. V., Tretiatchenko, C. G., Pashitskii, E. A., and Pan, V. M., IEEE Trans. Appl. Supercond. 15, 27832786 (2005).Google Scholar
8. Pan, V. M., Fedotov, Yu. V., Ryabchenko, S. M. et al. , Physica C 388-389, 431432 (2003).Google Scholar
9. Pan, V., Cherpak, Yu., Komashko, V., Pozigun, S., Tretiatchenko, C., Semenov, A., Pashitskii, E., Pan, A. V., Phys. Rev. B 73, 054508 (2006).Google Scholar
10. Cherpak, Yu. V., Svetchnikov, V. L., Semenov, A. V., Moskaliuk, V. O., Tretiatchenko, C. G., Flis, V. S., and Pan, V. M., J. Phys.: Conf. Ser. 97, 012259 (2008).Google Scholar
11. Tretiatchenko, C. G. and Pan, V. M., Supercond. Sci. Technol. 22, 045026 (2009).Google Scholar
12. Svetchnikov, V. L., Flis, V. S., Kalenyuk, A. A., Kasatkin, A. L., Rebikov, A. I., Moskaliuk, V. O., Tretiatchenko, C. G., and Pan, V. M., J. Phys.: Conf. Ser. 234, 012041 (2010).Google Scholar
13. Ichinose, A., Naoe, K., Horide, T. et al. , Supercond. Sci. Technol. 20, 11441150 (2007).Google Scholar
14. Peurla, M., Huhtinen, H., Tse, Y. Y., Raittila, J., and Paturi, P., IEEE Trans. Appl. Supercond. 17, 36083611 (2007).Google Scholar
15. Maiorov, B., Baily, S. A., Zhou, H. et al. , Nature Mater. 8, 398404 (2009).Google Scholar
16. Yamada, K., Ichinose, A., Tomokiyo, Y. et al. , Jpn. J. Appl. Phys. 46, 708711 (2007).Google Scholar
17. Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I., and Vinokur, V. M., Rev. Mod. Phys. 66, 11251388 (1994).Google Scholar
18. Nelson, D. R. and Vinokur, V. M., Phys. Rev. B, 48, 1306013097 (1993).Google Scholar
19. Brandt, E. H., Phys. Rev. Lett. 69, 11051108 (1992).Google Scholar
20. Kasatkin, L., Pan, V. M., and Freyhardt, H. C., IEEE Trans. Appl. Supercond. 7, 15881591 (1997).Google Scholar
21. Petković, A., Emig, T., and Nattermann, T., “Pinning of flux lines by planar defects”, Phys. Rev. B 79, 224512 (2009).Google Scholar
22. Pan, V. M., Kaminsky, G. G., Kasatkin, A. L., Kuznetsov, M. A., Prokhorov, V. G., Svetchnikov, V. L., Tretiatchenko, C. G., Flis, V. S., Yushchenko, S. K., Matsui, V. I., Melnikov, V., Supercond. Sci. Technol. 5, S48S54 (1992).Google Scholar
23. Durrell, J. H. and Rutter, N. A., Supercond. Sci. Technol. 22, 013001 (2009).Google Scholar
24. Nguyen, P. P., Oates, D. E., Dresselhaus, G., Dresselhaus, M. S., and Anderson, A. C., Phys. Rev. B 51, 66866695 (1995).Google Scholar
25. Sridhar, S., Appl. Phys. Lett. 65, 112150 (1994).Google Scholar