Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T06:05:15.071Z Has data issue: false hasContentIssue false

Broad Temperature Range Of Chiral Smectic C Phase In Some Ferroelectric Side-Chain Liquid Crystalline Polysiloxanes Containing Oligooxyethylene Spacers

Published online by Cambridge University Press:  16 February 2011

G. H. Hsiue
Affiliation:
Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 300, R.O.C.
J. H. Chen
Affiliation:
Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 300, R.O.C.
C. S. Hsu
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C.
Get access

Abstract

The Mesomorphic behaviors of some ferroelectric liquid crystalline monomers and side-chain polysiloxanes studied by X-ray diffraction Measurement, differential scanning calorimeter and polarizing Microscope. All obtained polymers exhibit wide temperature range of chiral smectic C phase including room temperature.

These Mesogenic structures contain oligooxyethylene spacers and (S)-2-Methyl-l -butyl chiral tail via a three phenyl ester linkage (i.e. -Ph-COO-Ph-Ph- or -Ph-Ph-COO-Ph-). Two series of monomers with different biphenyl group linkage position were compared. One shows a novel twisted smectic A phase, in addition to the liquid crystalline sequence (Ch→SA→Sc*) obtained between cholesteric phase and smectic A phase. It also presents an unusual smectic A and chiral smectic C phase.

All the prepared polymers present smectic Mesomorphism. As the unit of flexible oligooxyethylene spacers increases, the clearing temperature decreases and the stability of the smectic phase also increases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Clark, N. A.; Lagerwal, S. T. Appl. Phys. Lett., 1980, 36, 899.CrossRefGoogle Scholar
2. Lagerwall, S. T.; Dahl, L, Mol. Cryst. Lig. Cryst., 1984, 114, 151.CrossRefGoogle Scholar
3. Lagerwall, S. T.; Otterholm, B.; Skarp, K., Mol. Cryst. Liq. Cryst., 1987, 152, 503.Google Scholar
4. Shibaev, V. P.; Kozlovsky, M. V.; Beresnev, L. A.; Blinov, L. M.; Plate, N. A. Polym. Bull., 1984, 12, 299.CrossRefGoogle Scholar
5. Decobert, G.; Soyer, F.; Dubois, J. C. Polym. Bull., 1985, 14, 179.CrossRefGoogle Scholar
6. Guglielminetti, J. M.; Decobert, G.; Dubois, J. C. Polym. Bull., 1986, 16, 411.CrossRefGoogle Scholar
7. Decobert, G.; Dubois, J. C.; Esselin, S.; Noel, C. Liq. Cryst., 1986, 1, 307.CrossRefGoogle Scholar
8. Dubois, J. C.; Decobert, G.; LeBarny, P.; Esselin, S.; Friedrich, C.; Noel, C. Mol. Cryst. Liq Cryst., 1986, 137, 349.CrossRefGoogle Scholar
9. Esselin, S.; Bosio, L.; Noel, C.; Decobert, G.; Dubois, J. C. Liq. Cryst., 1987, 2, 505.CrossRefGoogle Scholar
10. Zentel, R.; Rekert, G.; Reck, B. Liq. Cryst., 1987, 2, 83.CrossRefGoogle Scholar
11. Hahn, B.; Percec, V. Macromolecules. 1987, 20, 2961.CrossRefGoogle Scholar
12. Bualek, S.; Kapitza, H.; Meyer, J.; Schmidt, G. F.; Zentel, R. Mol. Cryst. Liq. Cryst., 1988, 155, 47.Google Scholar
13. Uchida, S.; Morita, K.; Miyoshi, K.; Hashimoto, K.; Kawasaki, K. Mol. Cryst. Liq Cryst., 1988, 155, 93.Google Scholar
14. Esselin, S.; Noel, C.; Decobert, G.; Dubois, J. C. Mol. Cryst. Liq. Cryst., 1988, 155, 371 Google Scholar
15. Kapitza, H.; Zental, R. Makromol. Chem., 1988, 189, 1793.CrossRefGoogle Scholar
16. Zentel, R. Liq. Cryst., 1988, 3, 531 CrossRefGoogle Scholar
17. Zentel, R.; Reckert, G.; Bualek, S.; Kapitza, H. Makromol. Chem. 1989, 190, 2869.CrossRefGoogle Scholar
18. Vallerien, S. U.; Zentel, R.; Kremer, F.; Lapitza, H.; Fischer, E. W. Makromol. Chem., Rapid Commum., 1989, 10, 33.CrossRefGoogle Scholar
19. Scherowsky, G.; Schliwa, A.; Springer, J.; Kuhnpast, K.; Trapp, W. Liq. Cryst., 1989, 5, 1281.CrossRefGoogle Scholar
20. Shibaev, V. P.; Kozlovsky, M. V.; Plate, N. A. Liq. Cryst., 1990, 8, 1281.CrossRefGoogle Scholar
21. Dumon, M.; Nguyen, H. T.; Mauzac, M.; Destrade, C.; Achard, M. F.; Gasparoux, H. Macromolecules, 23, 355.CrossRefGoogle Scholar
22. Vallerien, S. U.; Kremer, F.; Fischer, E. W. Makromol. Chem., Rapid Commun., 1990, 11, 593.CrossRefGoogle Scholar
23. Vallerien, S. U.; Kremker, F.; Kapitza, H.; Zentel, R.; Fischer, E. W. Ferroelectrics, 1990, 109, 273.CrossRefGoogle Scholar
24. Brand, H. R.; Pleiner, H. Makromol. Chem., Rapid. Commun.,, 1990, 11, 607.CrossRefGoogle Scholar
25. Endo, H.; Hachiya, S.; Uchida, S.; Hashimoto, K.; Kawasaki, K. Liq. Cryst., 1991, 9, 635.CrossRefGoogle Scholar
26. Kapitza, H.; Zentel, R. Makromol. Chem., 1991, 192, 1859.CrossRefGoogle Scholar
27. Bomelburg, J.; Heppke, G.; Hollidt, J. Makromol. Chem., Rapid. Commun., 1991, 12, 483.CrossRefGoogle Scholar
28. LeBarny, P.; Dubois, J., In, J.C.Side Chain Liquid Crystal Polymers”, McArdle, C. B. Eds.; Blackie: Glasgow and London, 1989; p.130.Google Scholar
29. Goodby, J. W.; Waugh, M. A.; Stein, S. M.; Chin, E.; Pindak, R.; PatelJ, .S. Nature (London), 1989, 337, 449.CrossRefGoogle Scholar
30. Goodby, J. W.; Waugh, M. A.; Stein, S. M.; Chin, E.; Pindak, R.; PatelJ, .S. J. Am. Chem. Soc., 1989, 111, 8119.CrossRefGoogle Scholar
31. DeGennes, P. G. Solid State Commun., 1972, 10, 753.CrossRefGoogle Scholar
32. Srajer, G.; Pindak, R.; Waugh, M. A.; Goodby, J. W.; Patel, J. S. Phy. Rev. Lett., 1990, 64, 13.CrossRefGoogle Scholar
33. Renn, S. R.; Lubensky, T. C. Phy. Rev. A, 1988, 38, 2132.CrossRefGoogle Scholar
34. Renn, S. R.; Lubensky, T. C. Phy. Rev, (in the press).Google Scholar
35. Mitsunobu, O. Synthesis, 1981, 1.CrossRefGoogle Scholar
36. Hsu, C. S.; Shih, L. J.; Hsiue, G. H. Macromolecules, 1993, 26, 3161.CrossRefGoogle Scholar
37. Chen, J. H.; Chang, R. C.; Hsiue, G. H. Mol. Cryst. Liq. Cryst., (submitted).Google Scholar
38. Chen, J. H.; Chang, R. C.; Hsiue, G. H. Ferroelectrics. 1993 (in the press).Google Scholar