Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:45:36.119Z Has data issue: false hasContentIssue false

Brillouin Light Scattering Investigation of the Elastic Properties of Ta/Al Metallic Superlattices

Published online by Cambridge University Press:  21 February 2011

G. Carlotti
Affiliation:
Dipartimento di Fisica, Unita INFM, Universita di Perugia, Via Pascoli, 06100 Perugia, Italy
D. Fioretto
Affiliation:
Dipartimento di Fisica, Unita INFM, Universita di Perugia, Via Pascoli, 06100 Perugia, Italy
G. Socino
Affiliation:
Dipartimento di Fisica, Unita INFM, Universita di Perugia, Via Pascoli, 06100 Perugia, Italy
Hua Xia
Affiliation:
National Lab. of Solid State Microstructures,Nanjing University, Nanjing 210008, P R. China
An Hu
Affiliation:
National Lab. of Solid State Microstructures,Nanjing University, Nanjing 210008, P R. China
S. S. Jiang
Affiliation:
National Lab. of Solid State Microstructures,Nanjing University, Nanjing 210008, P R. China
Get access

Abstract

The Brillouin light scattering technique has been exploited for investigating the elastic properties of periodic superlattices made by alternating layers of Ta and Al. These multilayers, deposited by d.c. sputtering on glass and Si substrates, present a polycrystalline structure with (110) and (111) texture for the Ta and Al layers, respectively. They have total thicknesses of about 0.5 μm and periods ranging from 4 to 10 nm. Measurement of the phase velocities of the Rayleigh and Sezawa acoustic modes from the frequency position of the corresponding Brillouin peaks, yielded informaton on the effective elastic constants of the superlattices. for large periods (8-10 nm) the values determined experimentally are in good agreement with those calculated from the elastic constants of the bulk materials, while for lower periods (4-6 nm) the estimated elastic constants exhibit a marked increase. This anomalous behavior has been attributed to the presence of a transition layer at each interface, where Ta and Al interdiffuse, as observed by x-ray and electron microscopy experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Grimsditch, M.H., in Light Scattering in Solids V, ed by Cardona, M. and Guntherodt, G. (Springer-Verlag, Berlin, 1989), p.285 Google Scholar
[2] Bell, J.A., Bennet, W.R., Zanoni, R., Stegeman, G.I., Falco, C.M. and Seaton, C.T., Solid State Comm., 64, 1339 (1987)Google Scholar
[3] Khan, M.R., Chun, C.S.L., Felcher, G.P., Grimsditch, M., Kueny, A., Falco, C.M. and Schuller, I.K., Phys. Rev. B 27, 7186 (1983)Google Scholar
[4] Danner, R., Hebener, R.P., Chun, C.S.L., Grimsditch, M., Schuller, I.K., Phys. Rev. B 33, 3696 (1986)Google Scholar
[5] Bell, J.A., Bennett, W.R., Zanoni, R., Stegeman, G.I., Falco, C.M. and Nizzoli, F., Phys. Rev. B 35, 4127 (1987)Google Scholar
[6] Carlotti, G., Fioretto, D., Socino, G., Rodmacq, B. and Pelosin, V., J. Appl. Phys., 71, 4897 (1992); G. Carlotti, A. Montone, C. Petrillo and M. Vittori Antisari, J. Phys. Cond. Matt., 5, 4611 (1993)Google Scholar
[7] Song, Y., Yoshihara, A., Yamaguchi, A., Yamamoto, R., J. Magn. Magn. Mater. 126, 203 (1993)Google Scholar
[8] Jankowski, A.F. and Tsakalakos, T., J. Phys. F 15, 1279 (1985)Google Scholar
[9] Cammarata, R.C. and Sieradzky, K., Phys Rev. Lett 62, 2005 (1989)Google Scholar
[10] Huberman, M.L. and Grimsditch, M., Phys. Rev. B 62, 1403 (1989)Google Scholar
[11] Wolf, D. and Lutsko, J.F., Phys. Rev. Lett., 60, 1170 (1989)Google Scholar
[12] Grimsditch, M., Fullerton, E.E. and Schuller, I.K., Mat. Res. Soc. Symp. Proc., Vol. 308, (Mat. Res. Soc, Pittsburg, 1993), p. 685 Google Scholar
[13] Mattson, J., Bhadra, R., Ketterson, J., Brodsky, M. and Grimsditch, M., J. Appl. Phys. 67, 2873 (1990)Google Scholar
[14] Davis, B.M., Seidman, N.D., Moreau, A., Ketterson, J.B., Mattson, J. and Grimsditch, M., Phys. Rev. B 43, 9304 (1991)Google Scholar
[15] Dutcher, J.R., Lee, S., England, C.D., Stegeman, G.I. and Falco, C.M., J. of Mater. Sci. and Eng. A, 127, 2873 (1990)Google Scholar
[16] Dutcher, J. R., Lee, S., Kim, J., Stegeman, G.I. and Falco, C.I., Phys.Rev.Lett., 65, 1231 (1990)Google Scholar
[17] Jiang, S.S., Hu, A., Chen, H., Liu, W., Zhang, Y.X., Qiu, Y. and Feng, D., J. Appl. Phys. 66, 5258 (1989)Google Scholar
[18] Carlotti, G., Socino, G., Hu, An, Xia, Hua, Jiang, S.S., J. Appl. Phys. 75, 3081 (1994)Google Scholar
[19] Jiang, S.S., Zou, J., Cockaine, D.J.H., Sikorski, A., Hu, An and Peng, R.W., Phys. Stat. Sol., 130, 373 (1992); S.S. Jiang, J. Zou, D.J.H. Cockaine, A. Sikorski, An Hu and R.W. Peng, Phil. Mag. B, 66, 229 (1992)Google Scholar
[20] Nizzoli, F. and Sandercock, J.R., in ‘Dynamical Properties of Solids’, vol. 6, ed. by Horton, G.K. and Maradudin, A.A. (North Holland, Amsterdam, 1990) p.307; for the experimental apparatus used here, see also G. Carlotti, D. Fioretto, L. Palmieri, G. Socino, L. Verdini and E. Verona., IEEE Trans. Ultrason. Ferroelectr. Frequency Control, 38, 56 (1991),Google Scholar
[21] Musgrave, M.J.P., Crystal Acoustics, (Holden Day, S. Francisco, 1970), p. 177 Google Scholar
[22] Landolt-Bornstein Numerical Data, New Series, Group III, vol.11 (Springer, Berlin, 1979), p.10 Google Scholar
[23] Grimsditch, M., Phys. Rev. B 31, 6818 (1985)Google Scholar
[24] Farnell, G.W. and Adler, E.L., in Physical Acoustics, edited by Mason, W.P. and Thurston, R.N., Vol.9 (Academic Press, New York, 1972), p.35 Google Scholar