Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T13:22:45.191Z Has data issue: false hasContentIssue false

Bridged Polysilsesquioxanes with Improved Second Order Nonlinear Optical Properties and Stability

Published online by Cambridge University Press:  10 February 2011

S. T. Hobson
Affiliation:
Drug Assessment Division, U. S. Army Med. Res. Inst. of Chem. Def., APG,MD, 21010-5405*
J. Zieba
Affiliation:
Department of Chemistry SUNY Buffalo, Buffalo, NY 14260-3000
P. N. Prasad
Affiliation:
Department of Chemistry SUNY Buffalo, Buffalo, NY 14260-3000
K. J. Shea
Affiliation:
Department of ChemistryUniversity of California, Irvine, California, 92697-2025
Get access

Abstract

We report the synthesis and sol-gel polymerization of 4-nitro-N,N-bis[(3- triethoxysilyl)propyl]aniline 1. An efficient synthesis of the monomer was developed by the hydrosilylation of N, N-diallyl-4-nitroaniline. Optical quality thin films were synthesized by spin coating an n-butanol solution of 1 using formic acid as catalyst and source of water. We improved the temporal stability of the NLO signal from films prepared from 4-nitro-N,N-bis[(3-triethoxysilyl)propyl]aniline by increasing the intensity of the poling field and extending the heating period during the poling/curing stage. By Maker fringe analysis, a X(2) value of 9 × 10−8 esu was measured for these polysilsesquioxanes. If one assumes that the major component of the NLO effect is along the z-axis, the X(2) value corresponds to a d33 coefficient of 18.9 pm/V and a r33 value of 4.7 pm/V.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Prasad, P. N. in Contemporary Nonlinear Optics Agrawal, G. P.; Boyd, R. W.; Eds. Quantum Electronics--Principles and Applications, Academic Press, Boston, 1992; Chapter 7.Google Scholar
2 Zyss, J.; Chemla, D. S. in Nonlinear Optical Properties of Organic Molecules and Crystals Chemla, D. S.; Zyss, J.; Eds. Academic Press, New York, 1987; 23 Google Scholar
3 a Burzynski, R.; Prasad, P. N. in Sol Gel Optics: Processing and Applications; Klein, L. C., Ed.; Kluwar Academic Publishers, 1994; pp. 417450. b Levy, D., Esquivia, L. Adv. Mater. 1995, 7, 120.Google Scholar
4 Peng, Z.; Yu, L. Macromolecules 1994, 27, 2638 Google Scholar
5 Meyeriux, R.; Lemomte, J.; Tapolsky, G. Proc. SPIE 1991, 1560, 454 Google Scholar
6 Oviatt, H. W. Jr.; Shea, K. J.; Lairo, S.; Shi, T.; , Dalton, Steier, W. H.; Dalton, L. R. Chem. Mater. 1995, 7, 493.Google Scholar
7 Measured by Electric Field Induced Second Harmonic Generation EFISH, see Ulman, A.; Willand, C. S.; Kohler, W.; Robello, D. R.; Williams, D.J.; Handley, L. J Am. Chem. Soc. 1990, 112, 7083.Google Scholar
8 Tam, W.; Cheng, L.I. Bierlein, J. D.; Cheng, L. K.; Wang, Y.; Feiring, A. E.; Meredith, G. R.; Eaton, D. F.; Calabrese, J. C.; Rikken, G. L. J. A. in Materials for Nonlinear Optics : Chemical Perspectives; Marder, S. R.; Sohn, J. E., editor; Stucky, G. D. eds. ACS symposium series 455; American Chemical Society: Washington, DC, 1991; pp. 158160.Google Scholar
9 Perrin, D. D., Armarega, W. L. F. Purification of Laboratory Chemicals; Pergamon Press: Oxford, 1988.Google Scholar
10 Hobson, S. T. and Shea, K. J. Chem. Mater. 1997, 9, 616.Google Scholar
11 Mortazavi, M. A.; Knoesen, A.I. Kowel, S. T.; Higgins, B. G.; Dienes, A. J. Opt. Soc. Am. B. 1988, 6, 733.Google Scholar
12 Small, J. H. Ph.D. Dissertation, University of California, Irvine, 1995, p 139.Google Scholar
13 Oviatt, H. W. Ph.D. Dissertation, University of California, Irvine, 1995, Ch 8.Google Scholar
14 Gibbons, W. M.; Grasson, M. K.; O'Brien, M. K.; Shannon, P. J.; Sun, S. T. Macromolecules 1994, 27, 771.Google Scholar
15 Marciniec, B.; Gulinski, J.; Urbaniak, W.; Kometka, Z. Comprehensive Handbook on Hydrosilylation, Marciniec, B., Ed. Pergamon, Oxford.Google Scholar
16 Hampsch, J. M.; Torkelson, J. M.; Bethke, S. J.; Grubb, S. G. J. Appl. Phys. 1990, 67, 1037.Google Scholar
17 Stahelin, M.; Walsh, C. A.; Burland, D. M.; Miller, R. D.; Twieg, R. J.; Volksen, W. J. Appl. Phys. 1993, 73, 8471.Google Scholar
18 Suziki, A.; Matsuoka, Y. J. Appl. Phys. 1995, 77, 965.Google Scholar
19 Lebeau, B.; Bresselet, S.; Zyss, J.; Sanchez, C. Chem. Mater. 1997, 9, 1012.Google Scholar
20 dl I for quartz = 0.81 × 10-9 esu.Google Scholar
21 Saleh, G. E. A.; Teich, M. C. Fundamentals of Photonics; John Wiley and Sons, Inc.: New York, 1991; p 780.Google Scholar