Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T14:08:10.231Z Has data issue: false hasContentIssue false

Breast cancer detection using charge sensors coupled to DNA monolayer

Published online by Cambridge University Press:  02 July 2015

Marina R. Batistuti
Affiliation:
Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, Sao Paulo, Brazil
Marcelo Mulato
Affiliation:
Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, Sao Paulo, Brazil
Paulo R. Bueno
Affiliation:
Instituto de Química, Universidade Estadual Paulista, CP 355, 14800-900, Araraquara, São Paulo, Brazil
Get access

Abstract

We report the development of a label-free biosensors based on DNA hybridization, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). This study uses DNA sequences based on microRNA related with breast cancer. The biosensor was fabricated by immobilizing a self-assembled monolayer of single-stranded 23-mer oligonucleotide (ssDNA) via a thiol linker on gold work electrodes. Residual binding places were filled with 6 -mercaptohexanol (MCH). The electrode was electrochemicaly characterized in the presence of a redox system ferri/ferrocyanide. Different concentrations of complementary DNA sequence for hybridization were incubated; an increase of charge transfer resistance (Rct) was observed, used as sensor parameter and correlated with concentrations of complementary DNA sequence. A debate was presented on the effect of the MgCl2 influence on ssDNA immobilization solution.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Drummond, T. G., Hill, M. G. and Barton, J. K.. Nature Biotechnology 21, 11921199 (2003).CrossRefGoogle Scholar
Reichert, J., Csaki, A., Kohler, J.M., Fritzsche, W.. Anal. Chem. 72, 6025 (2000).CrossRefGoogle Scholar
Caruso, F., Rodda, E., Furlong, D.N., Niikura, K., Okahata, Y.. Anal. Chem. 69, 2043 (1997).CrossRefGoogle Scholar
Nelson, B.P., Grimsrud, T.E., Liles, M.R., Goodman, R.M., Corn, R.M.. Anal. Chem. 73, 1 (2001).CrossRefGoogle Scholar
Zhang, Z.L., Pang, D.W., Yuan, H., Cai, R.X., Abruna, H.. Anal. Bioanal. Chem. 381, 833 (2005).CrossRefGoogle Scholar
Wang, J., Electrochemical nucleic acid biosensors, in: Palecek, E., Scheller, F., Wang, J., Elsevier, 175 (2005).Google Scholar
Gooding, J.J., Electroanalysis 14, 1149 (2002).3.0.CO;2-8>CrossRefGoogle Scholar
Mir, M.1, Rodríguez, S. M., Fernández, O. C., Corbera, A. H., Samitier, J. and Wynblatt, P., Electrophoresis 32, 811821 (2011).CrossRefGoogle Scholar
Esquela-Kerscher, A. and Slack, F.J.. Nat. Rev. Cancer 6, 259269 (2006).CrossRefGoogle ScholarPubMed
Wen, Y. et al. Methods 64, 276282(2013).CrossRefGoogle Scholar
Nagalakshmi, U., Waern, K., and Snyder, M.. Current Protocols in Molecular Biology 4.11.14.11.13 (2010).Google Scholar
Kukol, A., Li, P., Estrela, P., Ko-Ferrigno, P. and Migliorato, P.. Anal. Biochem. 374. 143153 (2008).CrossRefGoogle Scholar
Kafka, J., Panke, O., Abendroth, B. and Lisdat, F.. Electrochimica Acta 53, 74677474 (2008).CrossRefGoogle Scholar
Steel, A. B., Herne, T, M., and Tarlov, M. J.. Anal. Chem. 70, 46704677 (1998).CrossRefGoogle Scholar
Fiscger, L. M.. Microelectronic engineering 86, 12821285 (2009).CrossRefGoogle Scholar