Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:13:06.104Z Has data issue: false hasContentIssue false

Block Copolymer Thin Films Above and Below the Order-Disorder Transition Temperature

Published online by Cambridge University Press:  01 February 2011

Ratchana Limary
Affiliation:
Dept. of Chemical Engineering and the Graduate Program in Materials Science, The University of Texas at Austin, Austin, TX
Peter F. Green
Affiliation:
Dept. of Chemical Engineering and the Graduate Program in Materials Science, The University of Texas at Austin, Austin, TX
Get access

Abstract

Symmetric diblock copolymers undergo a disorder to order transition below a microphase separation transition temperature. In this temperature range the structure is characterized by alternating lamellae of thickness L. In thin film geometries, the lamellae are oriented normal to the substrate if there is a preferential interaction between either of the block constituents and the substrate/copolymer or copolymer/vacuum interfaces. Depending on the relation between the film thickness and L, the topography of the film might comprise of holes, islands or spinodal-like structures. We show that in a polystyrene-b-poly(methyl methacrylate) diblock copolymer of molecular weight 20, 000 g/mol, above the microphase separation transition temperature, the topography of the film depends on the thickness. A heirarchy of bicontinuous patterns and holes is observed with increasing film thickness for films thinner than 35 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Segalman, R. A. and Green, P. F., Macromolecules. 32, 801 (1999).Google Scholar
2. Limary, R. and Green, P.F., Macromolecules. 32, 8167 (1999).Google Scholar
3. Limary, R. and Green, P. F. Langmuir. 15, 5617 (1999).Google Scholar
4. Sharma, A. and Khanna, R., Phys. Rev. Lett. 81, 3463 (1998).Google Scholar
5. Reiter, G., Phys. Rev. Lett. 68, 75 (1992).Google Scholar
6. Reiter, G., Langmuir. 9, 1344 (1993).Google Scholar
7. Brochard-Wyart, F. and Daillant, J., Can. J. Phys. 68, 1084 (1990).Google Scholar
8. Brochard-Wyart, F., Martin, P., and Redon, C., Langmuir. 9, 3682 (1993).Google Scholar
9. Israelachvili, J.N., Intermolecular and Surface Forces, Academic Press: London.Google Scholar
10. Xie, R., Karim, A., Douglas, J. F., Han, C. C., and Weiss, R. A., Phys. Rev. Lett. 81, 1251 (1998).Google Scholar
11. Masson, J-L. and Green, P.F., J. of Chem. Phys. 112, 349 (2000).Google Scholar
12. Bates, F. S. and Fredrickson, G. H., Ann. Rev. in Phys. Chem. 41, 525 (1990).Google Scholar
13. Russell, T. P., Hjelm, R. P., and Seeger, P. A., Macromolecules. 23, 890 (1990).Google Scholar
14. Green, P. F., Christensen, T. M., and Russell, T. P., Macromolecules. 255, 24 (1991).Google Scholar
15. Milner, S.T. and Morse, D. C., Phys. Rev. E. 54, 3793 (1996).Google Scholar
16. Orso, K.A. and Green, P.F., Macromolecules. 32, 1087 (1999).Google Scholar
17. Coulon, G., Russell, T. P., Deline, V. R., and Green, P. F., Macromolecules. 22, 5677 (1989).Google Scholar
18. Coulon, G., Russell, T. P., Deline, V. R., and Green, P. F., Macromolecules, 22, 2581 (1989);Google Scholar
Coulon, G., Collin, B., Ausserre, D., Chatenay, D., and Russell, T. P., J. Phy. France. 51, 2801 (1990).Google Scholar
19. Ausserre, D., Raghunathan, V. A., and Maaloum, M., J. Phys. II France. 3, 1485 (1993).Google Scholar
20. Shull, K. R., Faraday Discuss. 98, 203 (1994).Google Scholar