No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
Arrays of miniature focusing optics located at the focal plane can improve the performance of focal plane systems. By more completely collecting the light at the focal plane and concentrating it into a smaller spot size on the detector plane, the photodetector area can be substantially reduced. Increased gamma radiation hardening and noise reduction result from the decrease in photodetector surface area. Binary optics technology, a process for fabricating large arrays of diffractive optical elements, is especially attractive for infrared materials. In this paper, diffractive Fresnel microlens arrays containing over six thousand F/0.9 lenslets are patterned in the surface of CdTe substrates by successive photolithographic and Ar+ ion-beam-etching steps. Results on smaller arrays of monolithically integrated binary-optics lenslets with II-VI detectors, demonstrating enhanced photodetector responsivities, are presented for the first time.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.