Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:09:33.458Z Has data issue: false hasContentIssue false

Biaxial Texturing of Inorganic Photovoltaic Thin Films Using Low Energy Ion Beam Irradiation During Growth

Published online by Cambridge University Press:  01 February 2011

James Groves
Affiliation:
jgroves@stanford.edu, Stanford University, Materials Science, Stanford, California, United States
Garrett J Hayes
Affiliation:
ghayes@stanford.edu, Stanford University, Materials Science, Stanford, California, United States
Joel B Li
Affiliation:
joelli@stanford.edu, Stanford University, Electrical Engineering, Stanford, California, United States
Raymond F DePaula
Affiliation:
rdepaula@lanl.gov, Los Alamos National Laboratory, Superconductivity Technology Center, Los Alamos, New Mexico, United States
Robert Hammond
Affiliation:
rhammond@stanford.edu, Stanford University, GLAM, 476 Lomita Mall, Stanford, California, 94305, United States, 650 723-0169
Alberto Salleo
Affiliation:
asalleo@stanford.edu, Stanford University, Materials Science, Geballe Laboratory for Advanced Materials, Stanford, California, 94305, United States
Bruce M Clemens
Affiliation:
bmc@stanford.edu, Stanford University, Materials Science and Engineering, 94305, California, United States
Get access

Abstract

We describe our efforts to control the grain boundary alignment in polycrystalline thin films of silicon by using a biaxially textured template layer of CaF2 for photovoltaic device applications. We have chosen CaF2 as a candidate material due to its close lattice match with silicon and its suitability as an ion beam assisted deposition (IBAD) material. We show that the CaF2 aligns biaxially at a thickness of ~10 nm and, with the addition of an epitaxial CaF2 layer, has an in-plane texture of ~15°. Deposition of a subsequent layer of Si aligns on the template layer with an in-plane texture of 10.8°. The additional improvement of in-plane texture is similar to the behavior observed in more fully characterized IBAD materials systems. A germanium buffer layer is used to assist in the epitaxial deposition of Si on CaF2 template layers and single crystal substrates. These experiments confirm that an IBAD template can be used to biaxially orient polycrystalline Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Green, M. A., Silicon Solar Cells: Advanced Principles and Practice. (University of New South Wales, Sydney, NSW, Australia, 1995).Google Scholar
2 Dimitriadis, C. A., Solid State Commun. 56 (11), 925 (1985).Google Scholar
3 Seifert, W., Morgenstern, G. and Kittler, M., Semicond. Sci. Technol. 8 (9), 1687 (1993).Google Scholar
4 Arendt, P. N. and Foltyn, S. R., MRS Bull. 29 (8), 543 (2004).Google Scholar
5 Choi, W., Matias, V., Lee, J. K. and Findikoglu, A. T., Appl. Phys. Lett. 87 (15), 262111 (2005).Google Scholar
6 Findikoglu, A. T., Choi, W., Matias, V., Holesinger, T. G., Jia, Q. X. and Peterson, D. E., Adv. Mater. 17 (12), 1527 (2005).Google Scholar
7 Matzke, H., Radiat Eff. Defects Solids 64 (1-4), 3 (1982).Google Scholar
8 Groves, J. R., Yashar, P. C., Arendt, P. N., DePaula, R. F., Peterson, E. J. and Fitzsimmons, M. R., Physica C 355 (3-4), 293 (2001).Google Scholar
9 Groves, J. R., Hayes, G. J., Li, J. B., DePaula, R. F., Hammond, R. H., Salleo, A. and Clemens, B. M., in 2010 MRS Spring Meeting (San Francisco, CA, 2010).Google Scholar
10 Gsell, S., Schreck, M., Brescia, R., Stritzker, B., Arendt, P. N. and Groves, J. R., Jpn. J. Appl. Phys. 47 (12), 8925 (2008).Google Scholar
11 Ohring, M., Materials Science of Thin Films, 2nd ed. (Academic Press, San Diego, CA, 2002).Google Scholar