Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T13:08:53.190Z Has data issue: false hasContentIssue false

Beyond-The-Roadmap Technology: Silicon Heterojunctions, Optoelectronics, and Quantum Devices

Published online by Cambridge University Press:  10 February 2011

Alan Seabaugh
Affiliation:
Raytheon TI Systems, Dallas TX 75243
Roger Lake
Affiliation:
Raytheon TI Systems, Dallas TX 75243
Bobby Brar
Affiliation:
Raytheon TI Systems, Dallas TX 75243
Robert Wallacet
Affiliation:
Texas Instruments Incorporated, Dallas TX 75243
Glen Wilk
Affiliation:
Texas Instruments Incorporated, Dallas TX 75243
Get access

Abstract

The roadmap for silicon device technology has been drawn, extending to the year 2010, and featuring a CMOS transistor with a gate length of 0.07 μm [1]. Beyond this point, silicon heterojunctions could provide a means to further device scaling. Silicon heterojunctions could also bring new devices to the silicon substrate including light emitters and detectors, and resonant tunneling diodes (RTDs). Today SiGe/Si and SiGeC/Si heterojunctions are receiving the greatest attention, but heterojunctions now being developed to realize silicon RTDs are increasing the heterojunction options for silicon-based quantum-well and optical devices. Here we outline the fundamental device requirements for silicon optical and tunneling devices and describe progress on silicon heterojunction development towards demonstration of silicon-based RTDs. Materials now under study include, ZnS, crystalline oxides and nitrides; new processes could provide methods for forming crystalline materials over amorphous barriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. National Technology Roadmap for Semiconductors, SIA (1994).Google Scholar
2. Seabaugh, A. C., Brar, B., Broekaert, T., Frazier, G., and van der Wagt, P., 1997 GaAs IC Symp., pp. 119122.Google Scholar
3. Broekaert, T. P. E., Brar, B., van der Wagt, P., Morris, F., Moise, T., Frazier, G., and Beam, E. III, 1997 GaAs IC Symp., pp. 187190.Google Scholar
4. van der Wagt, P., Seabaugh, A., and Beam, E., III, 1996 IEDM Tech. Dig., pp. 425428.Google Scholar
5. Esaki, L., Phys. Rev. 109, 603604 (1958).Google Scholar
6. Tsai, H. H., Su, Y. K., Lin, H. H., Wang, R. L., and Lee, L., IEEE Electron Device Lett. 15, 357359 (1994).Google Scholar
7. Söderström, J. R., Chow, D. H., and McGill, T. C., Appl. Phys. Lett. 55, 10941096 (1989).Google Scholar
8. Lu, Z., Lockwood, D. J., and Baribeau, J. -M., Nature 378, 258260 (1995).Google Scholar
9. Hirose, M., Morita, M., and Osake, Y., Jpn. J. Appl. Phys. 16 Suppl. 16–1, 561–4 (1977).Google Scholar
10. Lake, R., Brar, B., Wilk, G. D., Seabaugh, A. C., and Klimeck, G., 1997 Int. Symp. Comp. Semicond.Google Scholar
11. Wei, Y., Wallace, R. M., and Seabaugh, A., Appl. Phys. Lett. 69, 12701272 (1996).Google Scholar
12. Wei, Y., Wallace, R. M., and Seabaugh, A. C., J. Appl. Phys. 81, 64156424 (1997).Google Scholar
13. Kolodzey, J., Chen, F., Ormer, B. A., Guerin, D., and Shah, S. I., Thin Solid Films 302, 201203 (1997).Google Scholar
14. Brar, B., Wilk, G. D., Seabaugh, A. C., Appl. Phys. Lett. 69, 27282730 (1996).Google Scholar
15. Romano, L. T., Bringans, R. D., Zhou, X., and Kirk, W. P., Phys. Rev. B 52, 11202– (1995).Google Scholar
16. Zhou, X., Jiang, S., and Kirk, W. P., J. Appl. Phys. 82, 22512262 (1997).Google Scholar
17. Brar, B., Steinhoff, R., Seabaugh, A., Zhou, X., Jiang, S., and Kirk, W. P., 1997 Int. Symp. Comp. Semicond.Google Scholar