Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:37:52.288Z Has data issue: false hasContentIssue false

Barriers For Copper Interconnections

Published online by Cambridge University Press:  10 February 2011

S. Simon Wong
Affiliation:
Center for Integrated Systems, Stanford University, Stanford, CA 94305, wong@ee.stanford.edu
Changsup Ryu
Affiliation:
Center for Integrated Systems, Stanford University, Stanford, CA 94305, wong@ee.stanford.edu
Haebum Lee
Affiliation:
Center for Integrated Systems, Stanford University, Stanford, CA 94305, wong@ee.stanford.edu
Kee-Won Kwon
Affiliation:
Center for Integrated Systems, Stanford University, Stanford, CA 94305, wong@ee.stanford.edu
Get access

Abstract

The integration of Cu interconnections will require sophisticated structures to prevent Cu from coming into contact with devices. The barriers for Cu also must have good adhesion with dielectric and Cu, and yield desirable microstructure of Cu. This paper discusses several critical barrier requirements and compares the properties of Ta and Ti/TiN barrier systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Muller, R. S. and Kamins, T. I., in Device Electronics for Integrated Circuits, 2nd ed. (John Wiley & Sons, New York, 1986), pp. 156.Google Scholar
[2] Ryu, C., Loke, A. L. S., Nogami, T. and Wong, S. S., IEEE/IRPS. Proc., p. 201, (1997).Google Scholar
[3] Wang, S.-Q., Suthar, S., Hoeflich, C., and Burrow, B. J., J. of Appl. Phys. 73 (5), 23012321 (1993).Google Scholar
[4] Olowolafe, J. O., Li, J., Mayer, J. W., and Colgan, E. G., Appl. Phys. Lett. 58 (5), 469471 (1991).Google Scholar
[5] Kim, D.-H., Cho, S.-L., Kim, K.-B., Kim, J. J., Park, J. W., and Kim, J. J., Appl. Phys. Lett. 69 (27), 41824184 (1996).10.1063/1.116979Google Scholar
[6] Ono, H., Nakano, T., and Ohta, T., Appl. Phys. Lett. 64 (12), 15111513 (1994).10.1063/1.111875Google Scholar
[7] Holloway, K., Fryer, P. M., Cabral, C. Jr., Harper, J. M. E., Bailey, P. J., and Kelleher, K. H., J. Appl. Phys. 71 (11), 54335443 (1992).Google Scholar
[8] Takeyama, M., Noya, A., Sase, T., Ohta, A., and Sasaki, K., J. of Vacuum Science & Technology B (Microelectronics and Nanometer Structures) 14 (2), 674678 (1996).Google Scholar
[9] Kolawa, E., Chen, J. S., Reid, J. S., Pokela, P. J., and Nicolet, M.-A., J. of Appl. Phys. 70 (3), 13691373 (1991).Google Scholar
[10] Oku, T., uekubo, M., Kawakami, E., Nii, K., Nakano, T., Ohta, T., and Murakami, M., in 1995 IEEE VMIC Conf., pp. 182185.Google Scholar
[11] Lu, J. P., Hong, Q. Z., Hsu, W. Y., Dixit, G. A., Cordasco, V., Russell, S. W., Lutttner, J. D., Havemann, R. H., Magel, L. K., and Tsai, H. L., in Advanced Metallization and Interconnect Systems for ULSI Applications (Oct. 1997).Google Scholar
[12] Kwon, K.-W., Ryu, C., Sinclair, R., and Wong, S. S., Appl. Phys. Lett. 71 (21), 30693071 (1997).Google Scholar