Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T14:13:01.957Z Has data issue: false hasContentIssue false

Barium Strontium Titanate Capacitors for Embedded Dram

Published online by Cambridge University Press:  10 February 2011

Peter Zurcher
Affiliation:
Motorola, Materials Technology Laboratories, 3501 Ed Bluestein Blvd. MD:K10, Austin, Texas 78721, USA
C.J. Tracy
Affiliation:
Motorola, Materials Technology Laboratories, 3501 Ed Bluestein Blvd. MD:K10, Austin, Texas 78721, USA
R.E. Jones Jr
Affiliation:
2100 E. Elliot Road, MD:EL740, Tempe, Arizona 85284, USA
P. Alluri
Affiliation:
2100 E. Elliot Road, MD:EL740, Tempe, Arizona 85284, USA
P.Y. Chu
Affiliation:
2100 E. Elliot Road, MD:EL740, Tempe, Arizona 85284, USA
B. Jiang
Affiliation:
2100 E. Elliot Road, MD:EL740, Tempe, Arizona 85284, USA
M. Kim
Affiliation:
Motorola, Materials Technology Laboratories, 3501 Ed Bluestein Blvd. MD:K10, Austin, Texas 78721, USA
B.M. Melnick
Affiliation:
2100 E. Elliot Road, MD:EL740, Tempe, Arizona 85284, USA
M.V. Raymond
Affiliation:
2100 E. Elliot Road, MD:EL740, Tempe, Arizona 85284, USA
D. Roberts
Affiliation:
2100 E. Elliot Road, MD:EL740, Tempe, Arizona 85284, USA
T.P. Remmel
Affiliation:
Motorola, Materials Technology Laboratories, 3501 Ed Bluestein Blvd. MD:K10, Austin, Texas 78721, USA
T.L. Tsai
Affiliation:
Motorola, Materials Technology Laboratories, 3501 Ed Bluestein Blvd. MD:K10, Austin, Texas 78721, USA
B.E. White
Affiliation:
2100 E. Elliot Road, MD:EL740, Tempe, Arizona 85284, USA
S. Zafar
Affiliation:
2100 E. Elliot Road, MD:EL740, Tempe, Arizona 85284, USA
S.J. Gillespie
Affiliation:
2100 E. Elliot Road, MD:EL740, Tempe, Arizona 85284, USA
Get access

Abstract

Long recognized as the best potential solution to the continued scaling of the onetransistor/one-capacitor standalone dynamic random access memory (DRAM) beyond a gigabit, barium strontium titanate (BST) and other high permittivity dielectrics are fast becoming enablers to embedding large amounts of memory into a high performance logic process. System requirements such as granularity, bandwidth, fill frequency, and power pose major challenges to the use of high density standalone DRAM, leading to the current push for embedded solutions where very wide buses are possible. As a result, projected embedded memory sizes are rapidly approaching that of the standalone products, and with the high wafer cost of the combined logic plus memory process, bit cell scaling is critical. The BST memory cell, with its low thermal budget processing, very high charge storage density, and high conductivity metal electrodes has the potential to be efficiently embedded with traditional logic flows if the materials and integration challenges of the required three dimensional (3D) bit cell capacitors can be solved. BST materials properties such as dielectric relaxation, interface capacitance, and resistance degradation and their impact on capacitor scaling will be reviewed along with the electrode materials issues associated with certain 3D capacitor designs. The scaling limits of BST bit cells in the deep sub-micron regime will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. “The National Technology Roadmap for Semiconductors: Technology Needs”, 1997 Edition, Semiconductor Industry Association.Google Scholar
2. Fazan, P.C, Integrated Ferroelectrics, 4, 247 (1994)Google Scholar
3. Prince, B., Semiconductor Memories. 2nd ed., 285 (John Wiley & Sons, New York, 1995)Google Scholar
4. Itoh, K., Nakagome, Y., Kimura, S., and Watanabe, T., IEEE J. Solid State Cir. 32, 624 (1997)Google Scholar
5. Tasch, A. and Parker, L., Proc. IEEE 77, 374 (1989)Google Scholar
6. Geib, H., Weber, W., Wohlrab, E., and Risch, L., IEEE J. Solid State Cir. 27, 1028 (1992)Google Scholar
7. Kotecki, David E., Integrated Ferroelectrics, 16, 1 (1997)Google Scholar
8. Jones, R.E. Jr, Zafar, S., White, B., Jiang, B., Melnick, B.M., Zurcher, P., Chu, P., Taylor, D., Remmel, T.P., and Gillespie, S.J., Electrochemical Society Proceedings, 98–3, 196 (1998)Google Scholar
9. Siemens Press release at Electronica '98, Munich, Germany, Nov. 1998 Google Scholar
10. Samsung Electroncs, Semiconductor News, Sept. 24, 1998 (www.samsung.com)Google Scholar
11. One, K., Horikawa, T., Shibano, T., Mikami, N., Kuroiwa, T., and Kawahara, T., IEDM-98, 30–1(1998)Google Scholar
12. Muller, K.P., Flietner, B., Hwang, C.L., Kleinhenz, R.L., Nakao, T., Ranade, R., Tsunashima, Y., and Mii, T., IEDM-96 Proceedings, 507 (1996).Google Scholar
13. Kamiyama, S., Saeki, T., Mori, H., and Numasawa, Y., IEDM 91, 827 (1991)Google Scholar
14. Bascari, C., Streiffer, S.K., Kingon, A.I., and Waser, R., J. Appl. Phys. 82, 2497 (1997)Google Scholar
15. Zafar, S., Jones, R.E. Jr, Chu, P., White, B., Jiang, B., Taylor, D., Zurcher, P., and Gillespie, S.J., Appl. Phys. Lett. 72, 2820 (1998)Google Scholar
16. Griffin, J., Matas, B., Subercasaux, C. de, Memory 1995, 2-53 ICE CorporationGoogle Scholar
17. Yamazaki, A., Yamagata, T., Arita, Y., Taniguchi, M., and Yamada, M., IEICE Trans. Electron., E81–C, 750 (1998).Google Scholar
18. Yamagata, T., Tomishima, S., Tsukude, M., Tsurudu, T., Hashizume, Y., and Arimoto, K., IEEE J. Solid State Cir. 30, 1183 (1995).Google Scholar
19. Chen, T-S., Balu, V., Jiang, B., Kuah, S-H., Lee, J.C., Chu, P.Y., Jones, R.E. Jr, Zurcher, P., Taylor, D.J., and Gillespie, S.J., Integrated Ferroelectrics, 16, 191 (1997)Google Scholar
20. Takemura, K., Yamamichi, S., Lesaicherre, P-Y., Tokashiki, K., Miyamoto, H., Ono, H., Miyasaka, Y., and Yoshida, M., Jpn. J. Appl. Phys., 34, 5224 (1995)Google Scholar
21. Kawakubo, T., Abe, K., Komatsu, S., Sano, K., Yanase, N., Mochizuki, H., IEEE Elect. Dev. Lett. 18, 529 (1997)Google Scholar
22. Pokela, P.J., Reid, J.S., Kwok, C., Kolawa, E., Nicolet, M-A., J. Appl. Phys. 70, 2828 (1991)Google Scholar
23. Yamamichi, S., Lesaicherre, P., Yamaguchi, H., Takemura, K., Sone, S., Yabuta, H., Sato, K., Tamura, T., Nakajima, K., Ohnishi, S., Tokashiki, K., Hayashi, Y., Kato, Y., Miyasaka, Y., Yoshida, M., Ono, H., IEEE Trans. Elect. Dev. 44, 1076 (1997)Google Scholar
24. White, B.E., Chu, P.Y., Zafar, S., Balu, V., Gentile, D., Jones, R.E., Jiang, B., Melnick, B.M., Taylor, D.J., Zurcher, P., and Gillespie, S.J., Mat. Res. Soc. Symp. Proc. 493, 165 (1998)Google Scholar
25. Izuha, M., Abe, K., and Fukushima, N., Jpn. J. Appl. Phys. 36, 5866 (1997)Google Scholar
26. Kato, Y., Yabuta, H., Sone, S., Yamaguchi, H., Lizuka, T., Yamamichi, S., Lesaicherre, P., Nishimoto, S., and Yoshida, Y., Mat. Res. Soc. Symp. Proc., 433, 3 (1996)Google Scholar
27. Zafar, S., Jones, R.E., Jiang, B., White, B.E., Kaushik, V., and Gillespie, S.J., Appl. Phys. Lett. 73, 3533 (1998)Google Scholar
28. Scott, J.F., Azuma, M., Fujii, E., Otsuki, T., Kano, G., Scott, M.C., Araujo, C.A. Paz de, McMillan, L.D., and Roberts, T., Proc. 1992 IEEE Intern. Symp. Appl. Ferroelectrics, 356 (1992)Google Scholar
29. Dietz, G.W., Antpohler, W., Klee, M., and Waser, R., J. Appl. Phys. 78, 1 (1995)Google Scholar
30. Horikawa, T., Makita, T., Kuroiwa, T., and Mikami, N., Jpn. J. Appl. Phys. 34, 5478 (1995)Google Scholar
31. Streiffer, S.K., Basceri, C., Kingon, A.I., Lipa, S., Bilodeau, S., Carl, R., and Burkirk, P.C. Van, Mat. Res. Soc. Symp. Proc. 415, 219 (1996)Google Scholar
32. Waser, R. and Klee, M., Integrated Ferroelectrics, 2, 23 (1992)Google Scholar
33. Schweidler, E. von, Ann. Phys. 24, 711 (1907)Google Scholar
34. Zafar, S., Jones, R.E., Hradsky, B., Gentile, D., Tsai, T-L., Zurcher, P., and Gillespie, S.J., MRS '98 Fall Meeting, Abstracts p. 289 (1998)Google Scholar
35. Waser, R., Baiatu, T., and Hardtl, K-H., J. Am. Ceram. Soc., 73, 1645 (1990)Google Scholar
36. Waser, R., Baiatu, T., and Hardtl, K-H., J. Am. Ceram. Soc., 73, 1654 (1990)Google Scholar
37. Baiatu, T., Waser, R., and Hardtl, K-H., J. Am. Ceram. Soc., 73, 1663 (1990)Google Scholar
38. Waser, R., Science and Technology of Electroceramic Thin Films, 223 (Kluwer Academic Publishers, 1995)Google Scholar
39. Horikawa, T., Kawahara, T., Yamamuka, M., and Ono, K., IEEE 35th Intern. Reliability Phys. Symp. Proc. (IEEE Cat. No. 97CH35983) p. 82 (1997)Google Scholar