Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:58:42.068Z Has data issue: false hasContentIssue false

Bacterial Adhesion on Polyelectrolyte Modified Microstructured Titanium Surfaces

Published online by Cambridge University Press:  01 February 2011

Argelia Almaguer-Flores
Affiliation:
Laboratorio de Genética Molecular, Facultad de Odontología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D. F. México
Yolloxóchilt R. Sánchez-Cruz
Affiliation:
Laboratorio de Genética Molecular, Facultad de Odontología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D. F. México
Jung Hwa Park
Affiliation:
Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
René Olivares-Navarrete
Affiliation:
Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Michel Dard
Affiliation:
Institut Straumann AG, Peter Merian-Weg 12, 4052 Basel, Switzerland, Email: argelia@almaguermac.com
Rinna Tannenbaum
Affiliation:
Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Zvi Schwartz
Affiliation:
Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Barbara D. Boyan
Affiliation:
Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Get access

Abstract

Micron-scale and submicron-scale surface roughness enhance osteoblast differentiation on titanium (Ti) substrates and increases bone-to-implant contact in vivo. However, bacterial adhesion is also strongly influenced by roughness and surface chemistry. The aim of this study was to investigate if chemical surface modifications alter initial bacterial attachment. To achieve this, two polyelectrolyte layers [chitosan (Ch) and poly(L-lysine) (PLL)] were used to coat Ti surfaces with different roughness (PT [Ra<0.3μm], SLA [Ra≥3.0μm]). Bacterial attachment was evaluated using Aggregatibacter actinomycetemcomitans, Actinomyces israelii, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum, Parvimonas micra, Porphyromonas gingivalis, Prevotella intermedia and Streptococcus sanguinis. After 24h incubation, bacteria were detached from the samples with sonication and the counting plate technique was performed to determine the number of colony forming units (CFU's). Additionally, surfaces were observed by scanning electron microscopy to determine bacteria surface coverage. Statistical significance was determined using ANOVA followed by Bonferroni's modification of Student's t-test. The results showed that polyelectrolyte coatings did not affect surface roughness. Modified surfaces were more hydrophilic than the controls. PT surfaces covered by Chi exhibited lower CFUs than the same surface covered by PLL or the control PT (140 × 105/mL, 343 × 105/mL and 283 × 105/mL, respectively). The opposite effect was observed on the SLA surfaces, PLL coated samples shown lower CFUʼs than Chi or uncoated SLA (199 × 105/mL, 229 × 105/mL and 227 × 105/mL, respectively). The Chi layer appeared to reduce bacterial adhesion only on the smooth surfaces. In contrast, PLL coatings reduced bacterial attachment on rougher surfaces. These results suggest that chemical modification of Ti without alteration of surface roughness affects oral bacterial attachment, and could be useful to prevent peri-implantitis related diseases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Quirynen, M., De Soete, M. and van Steenberghe, D., Clin Oral Implants Res 13 (1), 119 (2002).Google Scholar
2. Apse, P., Ellen, R. P., Overall, C. M. and Zarb, G. A., J Periodontal Res 24 (2), 96105 (1989).Google Scholar
3. Quirynen, M. and Listgarten, M. A., Clin Oral Implants Res 1 (1), 812 (1990).Google Scholar
4. Costerton, J. W., Stewart, P. S. and Greenberg, E. P., Science 284 (5418), 13181322 (1999).Google Scholar
5. Cordero, J., Munuera, L. and Folgueira, M. D., Injury 27 Suppl 3, SC3437 (1996).Google Scholar
6. Strevett, K. A. and Chen, G., Res Microbiol 154 (5), 329335 (2003).Google Scholar
7. Scheuerman, T. R., Camper, A. K. and Hamilton, M. A., J Colloid Interface Sci 208 (1), 2333 (1998).Google Scholar
8. Barbour, M. E., O'Sullivan, D. J., Jenkinson, H. F. and Jagger, D. C., J Mater Sci Mater Med 18 (7), 14391447 (2007).Google Scholar
9. Almaguer-Flores, A., Olivares-Navarrete, R., Lechuga-Bernal, A., Ximenez-Fyvie, L. A. and Rodil, S. E., Diamond and Related Materials 18 (9), 11791185 (2009).Google Scholar
10. Almaguer-Flores, A., Olivares-Navarrete, R., Ximénez-Fyvie, L. A., García-Zarco, O. and Rodil, S. E., presented at the Mater. Res. Soc. Symp. Proc., 2009 (unpublished).Google Scholar
11. Almaguer-Flores, A., Ximenez-Fyvie, L. A. and Rodil, S. E., J Biomed Mater Res B Appl Biomater (2009).Google Scholar
12. Muzzarelli, R., Tarsi, R., Filippini, O., Giovanetti, E., Biagini, G. and Varaldo, P. E., Antimicrobial Agents and Chemotherapy 34 (10), 20192023 (1990).Google Scholar
13. Tsai, G. J. and Su, W. H., J Food Prot 62 (3), 239243 (1999).Google Scholar
14. Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J. and Roller, S., International Journal of Food Microbiology 71 (2–3), 235244 (2001).Google Scholar
15. Sarasam, A. R., Brown, P., Khajotia, S. S., Dmytryk, J. J. and Madihally, S. V., J Mater Sci Mater Med 19 (3), 10831090 (2008).Google Scholar
16. Chua, P. H., Neoh, K. G., Kang, E. T. and Wang, W., Biomaterials 29 (10), 14121421 (2008).Google Scholar
17. Harnet, J. C., Guen, E. Le, Ball, V., Tenenbaum, H., Ogier, J., Haikel, Y. and Vodouhe, C., J Mater Sci Mater Med 20 (1), 185193 (2009).Google Scholar
18. Jacobson, B. S. and Branton, D., Science 195 (4275), 302304 (1977).Google Scholar
19. Krikorian, V., Kurian, M., Galvin, M. E., Nowak, A. P., Deming, T. J. and Pochan, D. J., Journal of Polymer Science Part B-Polymer Physics 40 (22), 25792586 (2002).Google Scholar
20. van Dijk, J., Herkstroter, F., Busscher, H., Weerkamp, A., Jansen, H. and Arends, J., J Clin Periodontol 14 (5), 300304 (1987).Google Scholar
21. Quirynen, M. and Bollen, C. M., J Clin Periodontol 22 (1), 114 (1995).Google Scholar