Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T14:16:30.856Z Has data issue: false hasContentIssue false

Autostoichiometric Vapor Deposition of Multicomponent Oxides

Published online by Cambridge University Press:  15 February 2011

K.W. Chour
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112
R. Xu
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112
Get access

Abstract

The theoretical basis of an autostoichiometric vapor deposition method is discussed. We try to define and analyze through the stagnant film model for vapor deposition, the mechanism through which the stoichiometry of a multicomponent oxide film can be precisely controlled. It is found that the utilization of a thermally stable, heterometallic molecular precursor, and a chemical reaction scheme which partially protects the integrity of the precursor molecule during deposition are essential for autostoichiometric vapor deposition. An ideal deposition reaction is the vapor phase hydrolysis, substrate surface polycondensation of volatile double alkoxides. A simple low pressure apparatus can be used to realize autostoichiometric vapor deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xu, Y.H. and Mackenzie, J.D., Integ. Ferroelectrics, 1, 17 (1992).Google Scholar
2. Desu, S.B., Beach, D.B., Wessels, B.W., and Gokoglu, S. Eds., Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, (Materials Research Society, Pittsburgh, 1993), Vol. 335.Google Scholar
3. Grove, A.S., Ind. & Eng. Chem., 58, 48 (1966).Google Scholar
4. Treybal, R.E., Mass-Transfer Operations, (McGraw-Hill Book Co., New York, 1955), Chapter 3.Google Scholar
5. Schlichting, H., Boundary Layer Theory, (McGraw-Hill Book Co., New York, 1960), Chapter 7.Google Scholar
6. Bradley, D.C., Mehrotra, R. C. and Gaur, D.P., Metal Alkoxides, (Academic Press, London, 1978), Chapter 5.Google Scholar
7. Chisholm, M.H., Inorganic Chemistry: Toward the 21st Century, (American Chemical Society, Washington, DC, 1983), Chapter 16.Google Scholar
8. Beidell, W., Shklover, V. and Berke, H., Inorg. Chem., 31, 5561 (1992).Google Scholar
9. Purdy, A.P. and George, C.F., Inorg. Chem., 30, 1970 (1991).Google Scholar
10. Campion, J.F., Payne, D.A., Chae, H.K., Maurin, J.K. and Wilson, S.R., Inorg. Chem., 30, 3245 (1991).Google Scholar
11. Huppertz, H. and Engl, W.L., IEEE Trans. Electr. Dev., ED-26, 658 (1979).Google Scholar
12. Levin, R.M. and Evans-Lutterodt, K., J. Vac. Sci. Technol., B1, 54 (1983).Google Scholar
13. Becker, F.S., Pawlik, D., Anzinger, H. and Spitzer, A., J. Vac. Sci. Technol., B5, 1555 (1987).Google Scholar
14. Desu, S.B., J. Am. Ceram. Soc, 72, 1615 (1989).Google Scholar
15. Bradley, D.C., Chem. Rev., 89, 1317 (1989).Google Scholar
16. Chour, K.W., and Xu, R., J. Mat. Res., submitted.Google Scholar
17. Mehrotra, R.C., Agrawal, M.M., and Kapoor, P.N., J. Chem. Soc, A, 2673 (1968).Google Scholar
18. Barnes, R.L. and Carruthers, J.R., J. Appl. Cryst., 395 (1970).Google Scholar
19. JCPDS-ICDD card No. 29–836Google Scholar
20. Abrahams, S. C. and Bernstein, J.L., J. Phys. Chem. Solids, 28, 1685 (1967).Google Scholar
21. LiTaO3 powder, Puratronic, 99.998%, Cat. No. 10745, Johnson-Matthey Co. Ward Hill, MA. USA.Google Scholar