Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T01:32:21.314Z Has data issue: false hasContentIssue false

Au and NiO nanoparticles dispersed inside porous SiO2 sol-gel film: correlation between localized surface plasmon resonance and structure upon thermal annealing

Published online by Cambridge University Press:  05 April 2012

Enrico Della Gaspera
Affiliation:
Università di Padova, Dipartimento di Ingegneria Industriale, Padova, Italy
Giovanni Mattei
Affiliation:
Università di Padova, Dipartimento di Fisica e Astronomia, Padova, Italy
Alessandro Martucci*
Affiliation:
Università di Padova, Dipartimento di Ingegneria Industriale, Padova, Italy
Get access

Abstract

The favorable lattice matching between Au and NiO crystals made possible the growth of unique cookie-like nanoparticles (25 nm mean diameter) inside a porous SiO2 film after annealing at 700 °C. The unusual aggregates result from the coupling of well distinguishable Au and NiO hemispheres, which respectively face each other through the (100) and (200) lattice planes. The thermal evolution of the Au and NiO nanoparticles structure has been studied by high resolution transmission electron microscopy and UV-visible absorption spectroscopy and correlated with the evolution of the Au surface plasmon resonance peak.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hotovy, I., Huran, J., Siciliano, P., Capone, S., Spiess, L. and Rehacek, V., Sens. Act. B 103, 300 (2004).Google Scholar
2. Martucci, A., Pasquale, M., Guglielmi, M., Post, M. and Pivin, J.C., J. Am. Cer. Soc. 86, 1638 (2003).Google Scholar
3. Wang, X., Sakai, G., Shimanoe, K., Miura, N. and Yamazoe, N., Sens. Act. B 45, 141 (1997).Google Scholar
4. Matsumiya, M., Shin, W., Izu, N. and Murayama, N., Sens. Act. B 93, 309 (2003).Google Scholar
5. Martucci, A., Buso, D., De Monte, M., Guglielmi, M., Cantalini, C. and Sada, C., J. Mat. Chem. 14, 2889 (2004).Google Scholar
6. Buso, D., Guglielmi, M., Martucci, A., Mattei, G., Mazzoldi, P., Sada, C. and Post, M. L., Nanotechnology 17, 2429 (2006).Google Scholar
7. Mattei, G., Mazzoldi, P., Post, M. L., Buso, D., Guglielmi, M. and Martucci, A., Adv. Mater. 19, 561 (2007).Google Scholar
8. Rogers, P.H., Sirinakis, G. and Carpenter, M.A., J. Phys. Chem. C, 112, 6749 (2008).Google Scholar
9. Buso, D., Busato, G., Guglielmi, M., Martucci, A., Bello, V., Mattei, G., Mazzoldi, P. and Post, M. L., Nanotechnology 18, 475505 (2007).Google Scholar
10. Ando, M., Kobayashi, T. and Haruta, M., Catalysis Today 36, 135 (1997).Google Scholar
11. Buso, D., Guglielmi, M., Martucci, A., Mattei, Giovanni, Mazzoldi, P., Sada, C. and Post, M.L., Cryst. Growth & Design 8, 744 (2008).Google Scholar