Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T21:02:44.428Z Has data issue: false hasContentIssue false

Atomistic Simulations of Displacement Cascades in Fused Silica: It is Compared with Different Concentration of H in the Bulk

Published online by Cambridge University Press:  26 February 2011

Fernando Mota
Affiliation:
fmgmota@gmail.com, Universidad Politecnica de Madrid, E.T.S.I.I, Instituto de Fusión Nuclear, C/ Jose Gutierrez Abascal nº 2, Madrid, 28006, Spain, 913363108, 913363002
Maria Jose Caturla
Affiliation:
mj.caturla@ua.es, Universidad de Alicante, Fisica Aplicada, Alicante, 03690, Spain
Jose Manuel Perlado
Affiliation:
mperlado@din.upm.es, Universidad Politécnica de Madrid. E.T.S.I.I., Instituto de Fusión Nuclear, C/José Gutierrez Abascal nº 2, Madrid, 28006, Spain
Angel Ibarra
Affiliation:
angel.ibarra@ciemat.es, CIEMAT, Materiales para Fusion, Avda/ Complutense nº 22, Madrid, 28040, Spain
Joaquin Molla
Affiliation:
joaquin.molla@ciemat.es, CIEMAT, Materiales para Fusion, Avda/ Complutense nº 22, Madrid, 28040, Spain
Get access

Abstract

Amorphous Silica is one of candidate materials for both final focusing optics of lasers for NIF and future inertial fusion reactors and diagnostics of the Safety and Control Systems of the ITER machine as well as DEMO magnetic fusion reactors. In operation, these materials will be exposed to high neutron irradiation fluxes and it can result in point defect and vary the optical absorption, that is, degradation of the optical properties. In this paper we present molecular dynamic simulation of displacement cascade due to energetic recoils in amorphous silica without hydrogen atoms and with 1% of hydrogen atoms trying to identify defects formation. We have made a statistics of the different kind of defects at different energy of primary knock-on atoms (PKA). The range of studied PKA energies are from 400 eV to 3.5 keV and it is made to both component of this material Silicon and Oxygen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hogdson, E. R., Nucl. Instrum. & Methods B 191 (2002) 744 Google Scholar
[2] Latkowski*, Jeffery F. Kubota, Alison Caturla, Maria J., Dixit, Sham N., Speth, Joel A., And Payne, Stephen A., Fusion Science and Technology, V43 N4 (2003) 540558 Google Scholar
[3] Marshall, C. D., Speth, J. A., Payne, S. A., Non-Crist, J.. Solids 212, 59 (1997)Google Scholar
[4] Mota, F., Caturla, M.-J, Perlado, J.M., Dominguez, E., Kubota, A., J. Nucl. Mater. 329–333 (2004) 11901193 Google Scholar
[5] Mota, F., Caturla, M.J., Perlado, J.M., Dominguez, E., Kubota, A., Fusion Engineering and Design, 75–79 (2005) 10271030 Google Scholar
[6] Feuston, B. P. and Garofalini, S. H., Journal Chemistry Physics 89[9] 5818–;5824 (1988)Google Scholar
[7] MDCASK http://www.llnl.gov/asci/purple/benchmarks/limited/mdcaskGoogle Scholar
[8] Kubota, A.,Caturla, M.J.,Stolken, J.S.,Feit, M.D.. OPTICs EXPRESS, 8(2001)Google Scholar
[9] Mollá, J. 1, Mota, F. 2, León, M. 1 , Ibarra, A. 1, Caturla, M.J. 3, Perlado, J.M., J. Nuclear Materials. In Press (2006)Google Scholar
[10] Feigl, F.J., Fowler, W.B., and Yip, K.L., Solids State Comm. 14 (1974) 225229 Google Scholar
[11] Pacchioni, G., Skuja, L., Griscom, D.L., NATO science series (2000).Google Scholar
[12] Webb, E. B. and Garofalini, S. H., J. of Non-Cryst. Solids 226 (1998) 4757 Google Scholar