Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T23:13:54.507Z Has data issue: false hasContentIssue false

Atomistic Simulation of Nuclear Fuels

Published online by Cambridge University Press:  30 March 2012

Matthias Krack*
Affiliation:
Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
Get access

Abstract

The experimental investigation of actinide materials like nuclear fuels is difficult and usually very costly. Therefore a reliable multi-scale modeling of these often hazardous materials starting at the atomistic level is inevitable to gain further insight into this type of materials. The development of new, more advanced simulation methods accompanied by the rapid growth of the available computational resources provided by high-performance computing facilities, allows the modeling of such materials at a new quality level. Also the recent development of the CP2K program package (http://www.cp2k.org) has been partially focused on enabling state-of-the-art simulations of actinide materials using classical potential as well as electronic structure methods. The long-term goal is to perform reliable molecular dynamics simulations for actinide materials including advanced simulation techniques like nudged elastic band or metadynamics simulations. In this work, the CP2K program package and its application to the simulation of defect migration in uranium dioxide (UO2) using the nudged elastic band method is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fox, A. R., Bart, S. C., Meyer, K., and Cummins, C. C., NATURE 455, 341 (2008)Google Scholar
[2] CP2K developers group 2000-2011 (http://www.cp2k.org)Google Scholar
[3] Krack, M. and Parrinello, M., Phys. Chem. Chem. Phys. 2, 2105 (2000)Google Scholar
[4] Krack, M. and Parrinello, M., Quickstep: Make the atoms dance in High Performance Computing in Chemistry, edited by J. Grotendorst (NIC-Directors, 2004), NIC Series Vol. 25, p. 29.Google Scholar
[5] Lippert, G., Hutter, J., and Parrinello, M., Mol. Phys. 92, 477 (1997)Google Scholar
[6] Lippert, G., Hutter, J., and Parrinello, M., Theor. Chem. Acc. 103, 124 (1999)Google Scholar
[7] VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., and Hutter, J., Comput. Phys. Commun. 167, 103 (2005)Google Scholar
[8] Henkelman, G., Uberuaga, B. P., and Jonsson, H., J. Chem. Phys. 113, 9901 (2000)Google Scholar
[9] Arima, T., Yamasaki, S., Inagaki, Y., and Idemitsu, K., J. Alloys Compd. 400, 43 (2005)Google Scholar
[10] Basak, C. B., Sengupta, A. K., and Kamath, H. S., J. Alloys Compd. 360, 210 (2003)Google Scholar
[11] Karakasidis, T. and Lindan, P. J. D., J. Phys.: Condens. Matter 6, 2965 (1994)Google Scholar
[12] Lewis, G. V. and Catlow, C. R. A., J. Phys. C: Solid State Phys. 18, 1149 (1985)Google Scholar
[13] Morelon, N. D., Ghaleb, D., Delaye, J. M., and Van Brutzel, L., Philos. Mag. 83, 1533 (2003)Google Scholar
[14] Sindzingre, P. and Gillan, M. J., J. Phys. C: Solid State Phys. 21, 4017 (1988)Google Scholar
[15] Tharmalingam, K., Philos. Mag. 23, 199 (1971)Google Scholar
[16] Walker, J. R. and Catlow, C. R. A., J. Phys. C: Solid State Phys. 14, L979 (1981)Google Scholar
[17] Yamada, K., Kurosaki, K., Uno, M., and Yamanaka, S., J. Alloys Compd. 307, 10 (2000)Google Scholar
[18] Benson, G. C., Freeman, P. J., and Dempsey, E., J. Am. Ceram. Soc. 46, 43 (1963)Google Scholar
[19] Fritz, I. J., J. Appl. Phys. 47, 4353 (1976)Google Scholar
[20] Robach, O., Micha, J.-S., Ulrich, O., and Gergaud, P., J. Appl. Crystallogr. 44, 688 (2011)Google Scholar
[21] Dick, B. G. and Overhauser, A. W., Phys. Rev. 112, 90 (1958)Google Scholar
[22] Mitchell, P. J. and Fincham, D., J. Phys.: Condens. Matter 5, 1031 (1993)Google Scholar
[23] Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G., J. Chem. Phys. 103, 8577 (1995)Google Scholar
[24] Ewald, P. P., Annalen der Physik 369, 253 (1921)Google Scholar
[25] Abramowski, M., Grimes, R. W., and Owens, S., J. Nucl. Mater. 275, 12 (1999)Google Scholar
[26] Catlow, C. R. A., Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990) 353, 533 (1977)Google Scholar
[27] Grimes, R. W. and Catlow, C. R. A., Phil. Trans. R. Soc. Lond. A 335, 609 (1991)Google Scholar
[28] Jackson, R. A., Murray, A. D., Harding, J. H., and Catlow, C. R. A., Phil. Mag. A 53, 27 (1986)Google Scholar
[29] Lewis, G. V. and Catlow, C. R. A., J. Phys. C: Solid State Phys. 18, 1149 (1985)Google Scholar
[30] Meis, C. and Chartier, A., J. Nucl. Mater. 341, 25 (2005)Google Scholar
[31] Read, M. S. D. and Jackson, R. A., J. Nucl. Mater. 406, 293 (2010)Google Scholar
[32] Govers, K., Lemehov, S., Hou, M., and Verwerft, M., J. Nucl. Mater. 366, 161 (2007)Google Scholar
[33] Matzke, H., J. Chem. Soc., Faraday Trans. 2 83, 1121 (1987)Google Scholar
[34] Faux, I. D., J. Phys. C: Solid State Phys. 4, L211 (1971)Google Scholar