Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T13:08:57.209Z Has data issue: false hasContentIssue false

Atomistic Modeling of Amorphization in Silicon

Published online by Cambridge University Press:  21 March 2011

Lourdes Pelaz
Affiliation:
Dept. Electricidad y Electró3nica, Universidad de Valladolid, 47011 Valladolid, Spain
Luis A. Marqués
Affiliation:
Dept. Electricidad y Electró3nica, Universidad de Valladolid, 47011 Valladolid, Spain
George H. Gilmer
Affiliation:
Agere Systems (Formerly Bell Laboratories, Lucent Technologies) 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.
Juan Barbolla
Affiliation:
Dept. Electricidad y Electró3nica, Universidad de Valladolid, 47011 Valladolid, Spain
Get access

Abstract

We discuss atomistic simulations of ion implantation and annealing of Si over a wide range of ion dose and substrate temperatures. The DADOS Monte Carlo model has been extended to include the formation of amorphous regions, and this allows simulations of dopant diffusion at high doses. As the dose of ions increases, a continuous amorphous layer may be formed. In that case, most of the excess interstitials generated by the implantation may be swept to the surface as the amorphous layer regrows, instead of diffusing through the crystalline region. This process reduces the amount of transient enhanced diffusion during annealing. This model also reproduces the dynamic annealing during high temperature implants.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., Haynes, T.E., J.Appl. Phys. 81, 6031 (1997).Google Scholar
2. Giles, M. D., J. Electrochem. Soc. 138, 1160 (1991).Google Scholar
3. Pelaz, L., Gilmer, G.H., Venezia, V.C., Gossmann, H.-J., Jaraiz, M., Barbolla, J., Appl. Phys. Lett. 74, 2017 (1999).Google Scholar
4. Robinson, M.T. and Torrens, I.M., Phys. Rev. B 9, 5008 (1974).Google Scholar
5. Jaraiz, M., Pelaz, L., Rubio, E., Barbolla, J., Gilmer, G.H., Eaglesham, D.J., Gossmann, H.J., Poate, J.M., Mater. Res. Soc. Symp. Proc. 54, 532 (1998).Google Scholar
6. Tang, M., Colombo, L., Zhu, J. and Rubia, T. Diaz de la, Phys. Rev. B 55, 4279 (1997).Google Scholar
7. Gilmer, G.H., Rubia, T. Diaz de la, Stock, D.M., Jaraiz, M.. Nucl. Instr. and Meth. In Phys. Res. B 102, 247 (1995).Google Scholar
8. Marqués, L.A., Pelaz, L., Hernandez, J., Barbolla, J., Gilmer, G.H., Phys. Rev. B 64, 045214 (2001).Google Scholar
9. Caturla, M.-J., Rubia, T. Diaz de la, Marqués, L.A., Gilmer, G.H., Phys. Rev. B 54, 16683 (1996).Google Scholar
10. Pelaz, L., Jaraiz, M., Gilmer, G.H., Gossmann, H-J., Rafferty, C.S., Eaglesham, D.J. and Poate, J.M., Appl. Phys. Lett 70, 285 (1997).Google Scholar
11. Williams, J.S., Elliman, R.G., Brown, W.L., and Seidel, T.E., Phys. Rev. Lett. 55, 1482 (1985).Google Scholar
12. Holland, O.W., White, C.W., Nucl. Instrum. Methods Phys. Res. B 59/60, 353 (1991).Google Scholar
13. Motooka, T. and Holland, O.W., Appl. Phys. Lett. 61 (25), 3005 (1992).Google Scholar
14. Goldberg, R.D., Williams, J.S., Elliman, R.G., Nucl. Instrum. Methods Phys. Res. B 106, 242 (1995).Google Scholar
15. Swanson, M.L., Parson, J.R., Hoelke, C.W., Radiat. Eff. 9, 249 (1971).Google Scholar
16. Morehead, F.W., Crowder, B.L., Radiat. Eff. 6, 27 (1970).Google Scholar
17. Pelaz, L., Gilmer, G.H., Venezia, V.C., Gossmann, H.-J., Jaraiz, M., Barbolla, J., Appl. Phys. Lett. 74, 2017 (1999).Google Scholar
18. Csepregi, L., Mayer, J.W., Sigmon, T.W., Phys. Lett. 54A (1975), 157.Google Scholar