Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T14:13:12.207Z Has data issue: false hasContentIssue false

Atomically Abrupt and Smooth Heterointerfaces: An Optical Investigation

Published online by Cambridge University Press:  28 February 2011

Colin A. Warwick
Affiliation:
AT&T Bell Labs, Crawfords Corner Road, Holmdel, NJ 07733
William Y. Jan
Affiliation:
AT&T Bell Labs, Crawfords Corner Road, Holmdel, NJ 07733
Abbas Ourmazd
Affiliation:
AT&T Bell Labs, Crawfords Corner Road, Holmdel, NJ 07733
Timothy D. Harris
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ, 07974
JÜdrgen Christen
Affiliation:
Technische Universität Berlin, FRG
Get access

Abstract

Luminescence spectra from quantum wells are routinely interpreted in terms of atomically smooth and atomically abrupt interfaces. Here we show that this interpretation is inconsistent with photoluminescence, photoluminescence excitation, and quantitative microscopic (chemical lattice imaging) results. We argue that the discussion of interfacial roughness in terms of “an island size” is too naive. A full characterization of an interface requires the description of a “roughness spectrum”, specifying the amplitude of the interfacial corrugation vs corrugation wavelength over the relevant length scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Weisbuch, C., Dingle, R., Gossard, A. C., and Wiegman, W., Solid State Commun. 38, 709 (1981).Google Scholar
[2] Goldstein, L., Horokoshi, Y., Tarucha, S., and Okamoto, H., Japan. J. Appl. Phys. 22, 1489 (1983).Google Scholar
[3] Reynolds, D. C., Bajaj, K. K, Litton, C. W., Yu, P. W., Singh, Jasprit, Masselink, W. T., Fisher, R., and Morkoq, H., Appl. Phys. Lett. 46, 51 (1985).Google Scholar
[4] Miller, R. C., Tu, C. W., Sputz, S. K, and Kopf, R. F., Appl. Phys. Lett. B49, 1245 (1986). C. W. Tu, R. C. Miller, B. A. Wilson, P. M. Petrofl T. D. Harris, R. F. Kopf, S. K. Sputz, and M. G. Lamont, J. Crystal Growth 81 159 (1987). P. M. Petroff, J. Cibert, A. C. Gossard, G. J. Dolan, and C. W. Tu, J. Vac. Sci. & Technol. B5 1204 (1987).Google Scholar
[5] Voillet, F., Madhukar, A., Kim, J. Y., Chen, P., Cho, N. M., Tang, W. C., and Newman, P. G., Appl. Phys. Lett. 48 1009 (1986).Google Scholar
[6] Bimberg, D., Christen, J., Fukunaga, T., Nakashima, H., Mars, D. E., and Miller, J. N., J. Vac. Sci. & Technol. B5 1191 (1987).Google Scholar
[7] Ourmazd, A., Taylor, D. W., Cunningham, J., and Tu, C. W., Phys. Rev. Lett. 62, 933 (1989).Google Scholar
[8] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical Recipes in C (Cambridge University Press, Cambridge, England, 1988) pp.540548.Google Scholar
[9] Solution of Schr6dinger equation assuming a barrier energy gap of (1.992±0.003)eV, well band gap of 1.5192 eV, 60% of the band offset in the conduction band, free exciton binding energy independent of well width, and effective mass numbers (electron, barrier, well, heavy hole) of meb=0.098, mew=0.067, mnnb =0.410 and mhhw=0.377. The results are very sensitive to the band offset, which is not very well known. However, all “smooth island” theories predict the splitting should be constant.Google Scholar
[10] Ogale, S. B., Madhukar, A., Voillot, F., Thomsen, M., Tang, W. C., Lee, T. C., Kim, J. Y., and Chen, P., Phys. Rev. B 36 1662 (1987)Google Scholar