Published online by Cambridge University Press: 10 February 2011
{222}MgO/Cu is one of the most extensively characterized ceramic/metal interfaces, in view of the atom-probe field-ion-microscopy, Z-contrast scanning-transmission-electron-microscopy (STEM), and spatially-resolved electron-energy-loss-spectroscopy (EELS) measurements performed by the present authors, as well as the high-resolution electron microscopy (HREM) of this system by others. Atomistic simulations with local density functional theory (LDFT) and molecular dynamics (MD) have been performed to gain additional insight into the structure of this interface. This presentation describes an interface interatomic potential for {222}MgO/Cu derived from LDFT total energy calculations, and its application to structural properties, including the terminating species, the absence of dislocation standoff, and the symmetry of the interfacial dislocation network.