Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:19:20.611Z Has data issue: false hasContentIssue false

Atomic Scale Modeling of ZrO2 and HfO2 Atomic Layer Deposition on Silicon: Linking Density Functional Theory and Kinetic Monte Carlo

Published online by Cambridge University Press:  01 February 2011

A. Estève
Affiliation:
Laboratoire d';Analyse et d'Architecture des Systèmes-CNRS, 7 av. du Colonel Roche, 31077 Toulouse, France.
L. Jeloaica
Affiliation:
Laboratoire d';Analyse et d'Architecture des Systèmes-CNRS, 7 av. du Colonel Roche, 31077 Toulouse, France.
G. Mazaleyrat
Affiliation:
Laboratoire d';Analyse et d'Architecture des Systèmes-CNRS, 7 av. du Colonel Roche, 31077 Toulouse, France.
A. Dkhissi
Affiliation:
Laboratoire d';Analyse et d'Architecture des Systèmes-CNRS, 7 av. du Colonel Roche, 31077 Toulouse, France.
M. Djafari Rouhani
Affiliation:
Laboratoire d';Analyse et d'Architecture des Systèmes-CNRS, 7 av. du Colonel Roche, 31077 Toulouse, France. Laboratoire de Physique des Solides, 118 route de Narbonne, 31062 Toulouse, France.
A. Ali Messaoud
Affiliation:
Laboratoire d';Analyse et d'Architecture des Systèmes-CNRS, 7 av. du Colonel Roche, 31077 Toulouse, France.
N. Fazouan
Affiliation:
Laboratoire de Physique des Matériaux, B.P. 523, Code Postal 23000, Béni Mellal, Morocco.
Get access

Abstract

The present paper establishes some required elements from both Quantum calculations and Kinetic Monte Carlo Modeling to perform full atomic scale simulations of Zirconia and Hafnia Atomic Layer Deposition (ALD) on Silicon technology process. In this view, we present quantum cluster calculations that investigate reaction pathways being part of the chemical reactions taking place at the different stages of the ALD growth. In particular, we detail ongoing research effort on the hydrolysis of adsorbed HfCl3 and ZrCl3 on ultra-thin SiO2. At very low water dose, the hydrolysis appears to be un-favourable. The complete reaction pathways with their associated activation barrier are detailed. We then show that actual available mechanisms emanating from quantum calculations are not sufficient to give a coherent picture of the layer structuring through a Kinetic Monte Carlo technique with the hope of giving new directions for further quantum studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stesmans, A. and Afanas'ev, V.V., Appl. Phys. Lett. 80, 1957 (2002).Google Scholar
2. Sayan, S., Aravamudhan, S., Bush, B.W., Schulte, W.H., Cosandey, F., Wilk, G.D., Gustafsson, T., Garfunkel, E., J. Vac. Sci. Technol. A 20, 507 (2002).Google Scholar
3. Park, B.K., Park, J., Cho, M., Hwang, C.S., Oh, K., Han, Y., Yang, D.Y., Appl. Phys. Lett. 80, 2368 (2002).Google Scholar
4. Sayan, S., Garfunkel, E., Suzer, S., Appl. Phys. Lett. 80, 2135 (2002).Google Scholar
5. Manory, R.R., Mori, T., Shimizu, I., Miyake, S., Kimmel, G., J. Vac. Sci. Technol. A 20, 549 (2002).Google Scholar
6. Niu, D., Ashcraft, R.W., Kelly, M.J., Chambers, J.J., Klein, T.M., Parsons, G.N., J. Appl. Phys. 91, 6173 (2002).Google Scholar
7. Hendrix, B.C., Borovik, A.S., Xu, C., Roeder, J.F., Baum, T.H., Bevan, M.J., Visokay, M.R., Chambers, J.J., Rotondaro, A.L.P., Bu, H., Colombo, L., Appl. Phys. Lett. 80, 2362 (2002).Google Scholar
8. Xu, Z., Houssa, M., Gendt, S.D., Heyns, M., Appl. Phys. Lett. 80, 1975 (2002).Google Scholar
9. Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 89, 5243 (2001).Google Scholar
10. MRS Bulletin, “Alternative Gate Dielectrics for Microelectronics”, March 2002.Google Scholar
11. Haverty, M., Kawamoto, A., Cho, K., Dutton, R., Appl. Phys. Lett. 80, 2669 (2002).Google Scholar
12. Gutowski, M., Jaffe, J.E., Liu, C.L., Stoker, M., Hegde, R.I., Rai, R.S., Tobin, P.J., Appl. Phys. Lett. 80, 1897 (2002).Google Scholar
13. Widjaja, Y., Musgrave, C.B., Appl. Phys. Lett. 80, 3304 (2002).Google Scholar
14. Widjaja, Y., Musgrave, C.B., Appl. Phys. Lett. 81, 304 (2002).Google Scholar
15. Estève, A., Djafari Rouhani, M., Jeloaica, L., Estève, D., Comp. Mat. Sci. 27, 75 (2003).Google Scholar
16. Jeloaica, L., Estève, A., Djafari Rouhani, M., Estève, D., Appl. Phys. Lett. 83, 542 (2003).Google Scholar
17. Halls, M.D. and Raghavachari, K., J. Chem. Phys. 118, 10221 (2003).Google Scholar
18. Estève, A., Chabal, Y.J., Raghavachari, K., Weldon, M.K., Queeney, K.T. and Djafari Rouhani, M., J. Appl. Phys. 90, 6000 (2001).Google Scholar