Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:36:38.470Z Has data issue: false hasContentIssue false

Atomic Layer Deposition of Silica and Group IV Metal Oxides Nanolaminates

Published online by Cambridge University Press:  01 February 2011

Lijuan Zhong
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, U.S.A.
Fang Chen
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.
Stephen A. Campbell
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.
Wayne L. Gladfelter
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, U.S.A.
Get access

Abstract

With alternating exposure of Si (100) substrates to tri (t -butoxy) silanol and anhydrous zirconium nitrate, mixed films of zirconia and silica were deposited at 162°C. The films were atomically smooth and their thickness was uniform across the entire substrate. The maximum growth rate of 12 Å/cycle implies deposition of more than one monolayer per cycle. A singular reflection in the low angle X-ray scattering pattern indicates an ordered bi-layer structure. Similar nanolaminate structures were also formed using anhydrous nitrates of hafnium and tin.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Qi, W. J.; Nieh, R.; Dharmarajan, E.; Lee, B. H.; Jeon, Y.; Kang, L. G.; Onishi, K.; Lee, J. C. Appl. Phys. Lett. 2000, 77, 1704.Google Scholar
(2) Wilk, G. D.; Wallace, R. M.; Anthony, J. M. J. Appl. Phys. 2000, 87, 484.Google Scholar
(3) Wilk, G. D.; Wallace, R. M. Appl. Phys. Lett. 2000, 76, 112.Google Scholar
(4) Lucovsky, G.; Rayner, G. B. Appl. Phys. Lett. 2000, 77, 2912.Google Scholar
(5) Gordon, R. G.; Becker, J.; Hausmann, D.; Suh, S. Chem. Mater. 2001, 13, 2463.Google Scholar
(6) Ritala, M.; Kukli, K.; Rahtu, A.; Raisanen, P. I.; Leskela, M.; Sajavaara, T.; Keinonen, J. Science 2000, 288, 319.Google Scholar
(7) Kim, W. K.; Kang, S. W.; Rhee, S. W.; Lee, N. I.; Lee, J. H.; Kang, H. K. J. Vac. Sci. Technol. A-Vac. Surf. Films 2002, 20, 2096.Google Scholar
(8) Vainonen-Ahlgren, E.; Tois, E.; Ahlgren, T.; Khriachtchev, L.; Marles, J.; Haukka, S.; Tuominen, M. Comput. Mater. Sci. 2003, 27, 65.Google Scholar
(9) He, W.; Solanki, R.; Conley, J. F.; Ono, Y. J. Appl. Phys. 2003, 94, 3657 Google Scholar
(10) Smith, R. C.; Hoilien, N.; Taylor, C. J.; Ma, T. Z.; Campbell, S. A.; Roberts, J. T.; Copel, M.; Buchanan, D. A.; Gribelyuk, M.; Gladfelter, W. L. J. Electrochem. Soc. 2000, 147, 3472.Google Scholar
(11) Colombo, D. G.; Gilmer, D. C.; Young, V. G. Jr; Campbell, S. A.; Gladfelter, W. L. Chem. Vap. Deposition 1998, 4, 220.Google Scholar
(12) Conley, J. F.; Ono, Y.; Tweet, D. J.; Zhuang, W.; Solanki, R. J. Appl. Phys. 2003, 93, 712.Google Scholar
(13) Hausmann, D.; Becker, J.; Wang, S. L.; Gordon, R. G. Science 2002, 298, 402.Google Scholar
(14) Schmeisser, M. Angew. Chem. 1955, 67, 493.Google Scholar
(15) Field, B. O. H., , C. J. Proc. Chem. Soc. 1962, 76.Google Scholar