Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T15:45:21.213Z Has data issue: false hasContentIssue false

Atomic Layer Deposition of HfO2 Thin Films on Si and GaAs Substrates

Published online by Cambridge University Press:  01 February 2011

Justin C Hackley
Affiliation:
Physics, UMBC, 1000 Hilltop Circle, Baltimore, MD, 21250
J. Derek Demaree
Affiliation:
jdemaree@arl.army.mil, Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD, 21005-5069, United States
Theodosia Gougousi
Affiliation:
gougousi@umbc.edu, UMBC, Physics, 1000 Hilltop Circle, Baltimore, MD, 21250, United States
Get access

Abstract

The atomic layer deposition of HfO2 thin films is studied on Si(100) and GaAs(100) surfaces. The films are grown using tetrakis(dimethylamido)hafnium (TDMAH) and H2O precursors at a deposition temperature of 275°C. The Si surfaces used include a H-terminated surface and an OH-rich chemical oxide. GaAs substrates are subjected to two different pre-deposition treatments involving an HF and a NH4OH wet chemical etch that has been shown to remove most of the Ga and As native oxides. Spectroscopic ellipsometry (SE) confirms linear growth rates of 1.05±0.05 Å/cycle for all surfaces. Rutherford backscattering spectrometry (RBS) shows that steady-state growth of 2.6×1014 Hf/cm2/cycle is reached after 10 ALD cycles for the HF-etched GaAs surface. X-ray photoelectron spectroscopy (XPS) indicates the presence of native oxides on both GaAs starting surfaces after 10 cycles due to postdeposition surface oxidation. However, the presence of the native oxide is not detected for thicker 15 and 20 cycle samples indicating passivation of the surface and suppression of the interfacial layer formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ritala, M. and Leskelä, M., in Handbook of Thin Film Materials, edited by Nalwa, H. S. Vol. 1, 103159 (2002).Google Scholar
2. Liu, X. Ramanathan, S. Longdergan, A. Srivastava, A. Lee, E. Seidel, T.E. Barton, J.T, Pang, D., Gordon, R.G. J. Electrochem. Soc. 152, G213 (2005)Google Scholar
3. Alam, M.A. Green, M.L. J. Appl. Phys. 94 (5), 3403 (2003)Google Scholar
4. Wang, Y. Ho, M.-T., Goncharova, L.V. Wielunksi, L.S. Rivillon-Amy, S., Chabal, Y.J. Gustafsson, T. Chem. Mater. 19, 31273138 (2007)Google Scholar
5. Wilk, G.D. Wallace, R.M. Anthony, J.M. J. Appl. Phys. 89, 5243 (2001)Google Scholar
6. Mereu, B. Rossel, C. Gusev, E. P. Yang, M. J. Appl. Phys. 100(1), 014504 (2006)Google Scholar
7. Robertson, J. and Falabretti, B. J. Appl. Phys. 100, 014111 (2006).Google Scholar
8. Frank, M. M. Wilk, G. D. Starodub, D. Gustafsson, T. Garfunkel, E. .Chabal, Y. J. Grazul, J. and Muller, D. A. Appl. Phys. Lett. 86, 152904 (2005).Google Scholar
9. Yang, T. Xuan, Y. Zemlyanov, D. Shen, T. Wu, Y.Q. Woodall, J.M. Ye, P.D. Aguirre-Tostado, F.S., Milojevic, M. McDonnell, S. and Wallace, R.M. Appl. Phys. Lett. 91, (9) 142122 (2007).Google Scholar
10. Dalapati, G.K. Tong, Y. Loh, W.-Y., Mun, H. K. and Cho, B. J. IEEE Trans. Electr. Dev. 54(8), 18311837 (2007).Google Scholar
11. Hausmann, D.M. Kim, E., Becker, J. and Gordon, R.G. Chem. Mater., 14 43504358 (2002)Google Scholar
12. Green, M.L. Ho, M.-Y., Busch, B. Wilk, G.D. Sorsch, T. Conard, T. Brijs, B. Vandervorst, W. Räisänen, P.I., Muller, D., Bude, M. Grazul, J. J. Appl. Phys., 92 7169 (2002)Google Scholar
13. Surdu-Bob, C.C., Saied, S.O. Sullivan, J.L. Appl. Surf. Sci. 183, 126 (2001)Google Scholar
14. Hackley, J.C. Demaree, J.D. Gougousi, T. submittedGoogle Scholar
15. Kukli, K. Pilvi, T. Ritala, M. Sajavaara, T. Lu, J. Leskela, M. Thin Solid Films, 491 328338 (2005).Google Scholar
16. Hackley, J.C. Demaree, J.D. Gougousi, T. Appl. Phys. Lett. in pressGoogle Scholar