No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Gold nanoparticles were linked to ZnO films and nanowires using phosphonic and carboxylic acid ligands. TEM and STEM-HAADF characterization showed that gold nanoparticles modified with both types of ligands anchored on ZnO nanowire surfaces as well as on ZnO films. After removing the ligands from the interface between ZnO nanowires and supported gold nanoparticles, the electric conductivity in the presence of methanol vapor increased by 100 times as compared to the bare ZnO nanowire, which suggested enhanced-catalytic effects due to the hybrid structure. In addition, ZnO/Au nanomaterials were synthesized by linking ZnO nanoparticles and carboxylate-functionalized gold nanoparticles in solution. UV-vis characterization showed both the bandgap absorption from ZnO and the plasmon absorption from gold nanoparticles. Formation of hybrid nanosystems like these using organic ligands as linkers not only can lead to materials with enhanced properties but also minimize the waste of precious elements because the assembly process is an additive, rather than subtractive, process.