Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T14:55:54.276Z Has data issue: false hasContentIssue false

Artificial Physical and Chemical Awareness (Proprioception) from Polymeric Motors

Published online by Cambridge University Press:  02 February 2015

T.F. Otero
Affiliation:
Universidad Politécnica de Cartagena, Physical Chemistry. Center for Electrochemistry and Intelligent Materials (CEMI), 30203, Cartagena, Spain
J.G. Martínez
Affiliation:
Universidad Politécnica de Cartagena, Physical Chemistry. Center for Electrochemistry and Intelligent Materials (CEMI), 30203, Cartagena, Spain
Get access

Abstract

Designers and engineers have been dreaming for decades with motors sensing, by themselves, working and surrounding conditions, as biological muscles do originating proprioception. The evolution of the working potential, or that of the consumed electrical energy, of electrochemical artificial muscles based on electroactive materials (intrinsically conducting polymers, redox polymers, carbon nanotubes, fullerene derivatives, grapheme derivatives, porphyrines, phtalocyanines, among others) and driven by constant currents senses, while working, any variation of the mechanical (trailed mass, obstacles, pressure, strain or stress) thermal or chemical conditions. They are linear faradaic polymeric motors: applied currents control movement rates and applied charges control displacements. One physically uniform artificial muscle includes one motor and several sensors working simultaneously under the same driving chemical reaction. Actuating (current and charge) and sensing (potential and energy) magnitudes are present, simultaneously, in the only two connecting wires and can be read by the computer at any time. From basic polymeric, mechanical and electrochemical principles a basic equation is attained for the muscle working potential evolution. It includes and describes, simultaneously, the polymeric motor characteristics (rate of the muscle movement and muscle position) and the working variables (temperature, electrolyte concentration and mechanical conditions). By changing working conditions experimental results overlap theoretical predictions. The ensemble computer-generator-muscle-theoretical equation constitutes and describes artificial mechanical, thermal and chemical proprioception of the system. Proprioceptive tools, zoomorphic or anthropomorphic soft robots can be envisaged.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Otero, T.F., Phys, J.. Conf. Ser. 127, 011001 (2008).Google Scholar
Otero, T.F., Martinez, J.G., and Arias-Pardilla, J., Electrochim. Acta 84, 112 (2012).CrossRefGoogle Scholar
Katchalsky, A. and Eisenberg, H., Nature 166, 267 (1950).CrossRefGoogle Scholar
Kuhn, W., Hargitay, B., Katchalsky, A., and Eisenberg, H., Nature 165, 514 (1950).CrossRefGoogle Scholar
Otero, T.F., in Modern Aspects of Electrochemistry, edited by White, R.E., Bockris, J.O., and Conway, B.E.(Springer US, New York, 1999), pp. 307434.Google Scholar
Otero, T.F., Polym. Rev. 53, 311 (2013).CrossRefGoogle Scholar
Otero, T.F., Mater, J.. Chem. B 1, 3754 (2013).Google Scholar
Otero, T.F. and Martinez, J.G., J. Mater. Chem. B 1, 26 (2013).CrossRefGoogle Scholar
Arias-Pardilla, J., Walker, W., Wudl, F., and Otero, T.F., J. Phys. Chem. B 114, 12777 (2010).CrossRefGoogle Scholar
Adhikari, B. and Majumdar, S., Prog. Polym. Sci. 29, 699 (2004).CrossRefGoogle Scholar
Ates, M., Mater. Sci. Eng. C-Mater. Biol. Appl. 33, 1853 (2013).CrossRefGoogle Scholar
Correa, D.S., Medeiros, E.S., Oliveira, J.E., Paterno, L.G., and Mattoso, L.H.C., J. Nanosci. Nanotechnol. 14, 6509 (2014).CrossRefGoogle Scholar
Otero, T.F., Angulo, E., Rodríguez, J., and Santamaría, C., J. Electroanal. Chem. 341, 369 (1992).CrossRefGoogle Scholar
Pei, Q. and Inganas, O., Adv. Mater. 4, 277 (1992).CrossRefGoogle Scholar
Skotheim, T.A. and Reynolds, J., editors, Handbook of Conducting Polymers, 3rd ed. (CRC Press, New York, 2006).Google Scholar
García-Córdova, F., Valero, L., Ismail, Y.A., and Otero, T.F., J. Mater. Chem. 21, 17265 (2011).CrossRefGoogle Scholar
Conzuelo, L.V., Arias-Pardilla, J., Cauich-Rodríguez, J.V., Smit, M.A., and Otero, T.F., Sensors 10, 2638 (2010).CrossRefGoogle Scholar
Atkins, P. and De Paula, J., Physical Chemistry, 7th ed. (OUP Oxford, Oxford, 2002).Google Scholar
Otero, T.F. and Cortes, M.T., Sens. Actuators B-Chem. 96, 152 (2003).CrossRefGoogle Scholar
Martinez, J.G., Sugino, T., Asaka, K., and Otero, T.F., Chemphyschem 13, 2108 (2012).CrossRefGoogle Scholar
Martínez, J.G., Otero, T.F., Bosch-Navarro, C., Coronado, E., Martí-Gastaldo, C., and Prima-Garcia, H., Electrochim. Acta 81, 49 (2012).CrossRefGoogle Scholar
Otero, T.F. and Broschart, M., J. Appl. Electrochem. 36, 205 (2006).CrossRefGoogle Scholar
Arias-Pardilla, J., Plesse, C., Khaldi, A., Vidal, F., Chevrot, C., and Otero, T.F., J. Electroanal. Chem. 652, 37 (2011).CrossRefGoogle Scholar
Ismail, Y.A., Martínez, J.G., and Otero, T.F., Electrochim. Acta 123, 501 (2014).CrossRefGoogle Scholar
Ismail, Y.A., Martinez, J.G., and Otero, T.F., J. Electroanal. Chem. 719, 47 (2014).CrossRefGoogle Scholar
Otero, T. and Cortes, M., Adv. Mater. 15, 279 (2003).CrossRefGoogle Scholar
Otero, T., Boyano, I., Cortes, M., and Vazquez, G., Electrochim. Acta 49, 3719 (2004).CrossRefGoogle Scholar
Vetter, K., Electrochemical Kinetics : Theoretical and Experimental Aspects (Academic Press, New York, N.Y, 1967).Google Scholar
Otero, T.F. and Martinez, J.G., Prog. Polym. Sci.. doi:10.1016/j.progpolymsci.2014.09.002.CrossRefGoogle Scholar
Martinez, J.G. and Otero, T.F., Sens. Actuators B Chem. 195, 365 (2014).CrossRefGoogle Scholar
Otero, T.F., Sanchez, J.J., and Martinez, J.G., J. Phys. Chem. B 116, 5279 (2012).CrossRefGoogle Scholar
Martinez, J.G. and Otero, T.F., J. Phys. Chem. B 116, 9223 (2012).CrossRefGoogle Scholar