Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T02:27:56.405Z Has data issue: false hasContentIssue false

Anomalous magnetic ordering transition and induced Raman scattering in BiFeO3 thin films

Published online by Cambridge University Press:  01 February 2011

Manoj K Singh
Affiliation:
mksingh100@yahoo.com, University of Puerto Rico, Department of Physics, fukandobasu , upr, sanjuan, San Juan, N/A, India, 787-925-2050
W Prellier
Affiliation:
wilfrid.prellier@ensicaen.fr, Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, 6 Bd du Maréchal Juin, F-14050 Caen Cedex, France, Caen, 14050, France
H M Jang
Affiliation:
hmjang@postech.as.kr, Pohang University of Science and Technology (POSTECH), Department of Materials Science and Engineering and Department of Physics, Pohang, 790-784, Korea, Republic of
Ram S Katiyar
Affiliation:
rkatiyar@uprrp.edu, University of Puerto Rico, PR, 1Department of Physics and Institute of Functional Nano materials, SanJuan, 00931, Puerto Rico
Get access

Abstract

Low temperature magnetic properties and Raman spectrum of highly (111)-oriented rhombohedral BiFeO3 (BFO) thin films epitaxially grown on (111) SrTiO3 substrates by pulsed laser deposition have been studied. Zero field cooled (ZFC) and field cooled (FC) magnetization curves display divergence at characteristic temperature Tirr (H), which are magnetic field dependent, suggesting a spin-glass like behavior of the film. The change in magnetic ordering results in anomalous phonon behavior such as the extraordinary enhancement and appearance of new Raman modes due to Brillouin zone folding below ∼200 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hill, N. A., J. Phys. Chem. B 104, 6694 (2000).Google Scholar
2. Kubel, F. and Schmid, H., Acta Crystallogr. B 46, 698 (1990).Google Scholar
3. Przenioslo, R, Palewicz, A, Regulski, M., Sosnowska, I., Ibberson, R. M. and Knight, K. S. J. Phys: Condens. Matter 18, 2069 (2006).Google Scholar
4. Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M., and Ramesh, R., Science 299, 1719 (2003).Google Scholar
5. Nakamura, S., Soeya, S., Ikeda, N, Tanaka, M., J. Appl. Phys. 74, 9 (1993).Google Scholar
6. Park, T J et al. , Nano Lett. 7, 766 (2007).Google Scholar
7. Balkanski, M., Juanne, M. and scagliotti, M, Pure & Appl. Chem. 59, 1247 (1987).Google Scholar
8. Lee, D., Kim, M. G., Ryu, S., Jang, H. M., and Lee, S. G., Appl. Phys. Lett. 86, 222903 (2005).Google Scholar
9. Singh, M. K, Katiyar, R. S., Prellier, W, Hang, H. M., ( Communicated)Google Scholar
10. Singh, M. K., Prellier, W, Singh, M. P., Katiyar, R. S., Scott, J. F., Phys. Rev. B (In press)Google Scholar
11. Singh, M. K., Katiyar, R. S., and Scott, J. F., arXiv:0712,4040v1.Google Scholar
12. Cazayous, M., Gallais, Y., Sacuto, A., Sousa, R. De, Lebeugle, D., Colson, D., arXiv:0712.3044Google Scholar
13. Singh, M. K., Jang, H.M., Ryu, S., Jo, M. H., Appl. Phys. Lett. 88, 429 (2006)Google Scholar
14. Singh, M. K., Ryu, S., Jang, H. M., Phys. Rev. B........Google Scholar
15. Fukumara, H., Matsui, S., Harima, H., Takahashi, T., Itoh, T., Kisoda, K, Tamada, M., Noguchi, Y., and Miyayama, M., J. Phys: Condens. Matter. 19, 365224 (2007).Google Scholar
16. Sherman, E Ya et al. Europhys Lett. 48, 648 (1999)Google Scholar
17. Fischer, M, Phys. Rev. B. 60, 7284 (1999).Google Scholar
18. Suzuki, N. and Kamimura, H., J. Phys. Soc. Jpn., 35, 985 (1973)Google Scholar