Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:18:31.861Z Has data issue: false hasContentIssue false

Anode Hosts for Lithium Batteries: Revisiting Tin and Aluminum

Published online by Cambridge University Press:  01 February 2011

Quan Fan
Affiliation:
Department of Chemistry, State University of New York at Binghamton Binghamton, New York 13902
Peter Zavalij
Affiliation:
Department of Chemistry, State University of New York at Binghamton Binghamton, New York 13902
M. Stanley Whittingham*
Affiliation:
Department of Chemistry, State University of New York at Binghamton Binghamton, New York 13902
Get access

Abstract

Pure tin reacts readily with four lithium atoms, and so is a prime candidate as the host for the anode of lithium batteries. Tin foil and an expanded tin grid (microporous tin) have a capacity of >600 mAh/g over more than 10 deep reaction cycles, indicating the inherent reversibility of tin anode. The microporous tin showed superior chemical capacity retention. Different phases are observed during the intercalation of lithium. Capacity loss was observed after 10 cycles though, consistent with the significant increase of the cell impedance. For comparison aluminum expanded grids were also examined as hosts, where LiAl is formed. Capacities approaching 1 Ah/g were obtained. LiBOB (lithium bis(oxalato)borate) was also studied as the electrolyte salt for comparison with the reactive and high cost LiPF6 salt.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rao, B. M. L., Francis, R. W., Christopher, H. A., J. Electrochem. Soc., 124, 1490 (1997).Google Scholar
2. Winter, M., Besenhard, J.O., Electrochim. Act, 45, 31 (1999).Google Scholar
3. Yang, S., Zavalij, P. Y., Whittingham, M. S., Electrochem. Commun., 5, 587 (2003).Google Scholar
4. Beaulieu, L. Y., Beattie, S. D., Batchard, T. D., Dahn, J. R., J. Electrochem. Soc., 150, A419 (2003).Google Scholar
5. Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., Miyasaka, T., Science 276, 1395 (1997).Google Scholar
6. Courtney, I.A., Dahn, J.R., J. Electrochem. Soc. 144, 2045 (1997).Google Scholar
7. Brousse, T., Retoux, R., Herterich, H., Schleich, D. M., J. Electrochem. Soc. 145, 1 (1998).Google Scholar
8. Courtney, I.A., Dahn, J.R., J. Electrochem. Soc. 144, 2943 (1997).Google Scholar
9. Goward, G. R., Leroux, F., Power, W. P., Ouvrard, G., Dmowski, W., Egami, T., Nazar, L.F., Electrochem. Solid State Lett. 2, 367 (1999).Google Scholar
10. Santos-Pe∼na, J., Brousse, T., Schleich, D.M., Solid State Ionics 135, 87 (2000).Google Scholar
11. Huggins, R. A., Solid State Ionics 113, 57 (1998).Google Scholar
12. Yang, J., Takeda, Y., Imanishi, N., Yamamoto, O., J. Electrochem. Soc. 146, 4009 (1999).Google Scholar
13. Kepler, K.D., Vaughey, J. T., Thackeray, M.M., Electrochem. Solid State Lett. 2, 307 (1999).Google Scholar
14. Yang, J., Wachtler, M., Winter, M., Besenhard, J. O., Electrochem. Solid State Lett. 2, 161 (1999).Google Scholar
15. Mao, O., Dahn, J. R., J. Electrochem. Soc. 146, 414 (1999).Google Scholar
16. Mao, O., Turner, R. L., Courtney, I. A., Fredericksen, B. D., Buckett, M. I., Krause, L. J., Dahn, J. R., Electrochem. Solid State Lett. 2, 3 (1999).Google Scholar
17. Xu, W., Angell, C. A., Electrochem. Solid State Lett. 4, E1E4 (1999).Google Scholar
18. Wietelmann, U., Lischka, U., Wegner, M., United States Patent, No. 6 506 516 (2003)Google Scholar
19. Xu, K., Lee, U., Zhang, S., Wood, M., Jow, T. R., Electrochem. Solid-State Lett. 6, A144 (2003).Google Scholar
20. Jiang, J., Dahn, J. R., Electrochem.Commun. 6, 39 (2004).Google Scholar
21. Jiang, J., Dahn, J. R., Electrochem. Solid-State Lett. 6, A180 (2003).Google Scholar
22. Jiang, J., Dahn, J. R., J. Electrochem. Soc., 151, A609 (2004).Google Scholar
23. Yang, S., Zavalij, P. Y., Whittingham, M. S., Mater. Res. Soc. Proc. 756, 295 (2003).Google Scholar
24. Wang, J., Raistrick, I. D., Huggins, R. A., J. Electrochem. Soc. 133, 457 (1986).Google Scholar
25. Ong, T. S., Yang, H., J. Electrochem. Soc. 149, A1 (2002).Google Scholar