Published online by Cambridge University Press: 21 February 2011
a-Si:H solar cells were irradiated with 1.00 MeV proton fluences in the range of 1.00E14 to 1.2 5E15 cm-2. Annealing of the short-circuit current density was studied at 0, 22, 50, 100 and 150 °C. Annealing times ranged from an hour to several days. The measurements confirmed that annealing occurs at O °C and the initial characteristics of the cells are restored by annealing at 200 °C. It is proposed that the degradation in the short-circuit current density with irradiation is due to carrier recombination through the fraction of D° states bounded by the guasi-Fermi energies. The time dependence of the rate of annealing in the short-circuit current density appears to be consistent with the interpretation that there is dispersive transport mechanism which leads to the annealing of the irradiation induced defects.
This work was supoorted under NASA contract NAG 3–833 and the wayne state university Institute for manufacturing Research.