Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T01:09:28.174Z Has data issue: false hasContentIssue false

Anatase titania nanoparticles for covering P3HT microfibers: Morphological properties

Published online by Cambridge University Press:  16 June 2015

Evelyn B. Díaz-Cruz
Affiliation:
Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México, UNAM, México
Diego Hernandez
Affiliation:
Centro de Investigación en Ingeniería y Ciencia Aplicadas, UAEM, Cuernavaca Morelos, México
M.E. Nicho-Díaz
Affiliation:
Centro de Investigación en Ingeniería y Ciencia Aplicadas, UAEM, Cuernavaca Morelos, México
Omar Martínez-Alvarez
Affiliation:
Universidad Politécnica de Guanajuato, Cortazar Guanajuato, México
Hailin Zhao-Hu
Affiliation:
Instituto de Energías Renovables, UNAM, Temixco Morelos, México
Claudia Martínez-Alonso
Affiliation:
Instituto de Energías Renovables, UNAM, Temixco Morelos, México
M.C. Arenas-Arrocena*
Affiliation:
Escuela Nacional de Estudios Superiores, Unidad León, UNAM, León Guanajuato, México
*
*Corresponding Author: carenas@enes.unam.mx
Get access

Abstract

Anatase titania has been widely used for several applications such as photocatalysis and solar cells. Sol-gel is a conventional route to obtain amorphous titania and, either post-annealing or a post-hydrothermal treatment are necessary to obtain anatase crystalline phase. It is well known that the synthesis conditions affect in the particle size, surface area and grain size of the titania. In this work regular nanoparticles of anatase titania (TiO2) were obtained by an easy ultrasound-assisted synthesis; the nanoparticles were undergone to either a hydrothermal treatment at 130 °C and/or to an annealing at 450°C. Nanoparticles powder with a crystal size of about 8-10 nm were re-dispersed in aqueous solution at different concentrations (5 to 20mg/mL). Poly (3-hexylthiophene) (P3HT) microfibers were immersed into the TiO2 nanoparticles solution for 24 h and they were dried at 80°C for 1 h in order to form the bulk heterojunction. P3HT:TiO2 heterojunctions were characterized by SEM and EDS. According to SEM results at low concentration (5 mg/mL), the covering of the P3HT microfibers is poor and at high concentration (20 mg/mL) the microfibers were seen cracked. The best homogeneous covering onto the P3HT microfibers was obtained at 10mg/mL of titania nanoparticles; it could be the optimal concentration to build bulk heterojunction for hybrid solar cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, Q., Shi, H., Shi, W., Xu, Y.O., Wu, D., Enhanced visible photocatalytic activity of titania– silica photocatalysts: effect of carbon and silver doping, Catalysis Science & Technology 2 (2012) 12131220.CrossRefGoogle Scholar
Shalan, A.E., Rashad, M.M., Yu, Y., Lira-Cantú, M., Abdel-Motttaleb, M.S.A, Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells, Electrochimica Acta 89 (2013) 469478.CrossRefGoogle Scholar
Arenas, M.C., Rodríguez-Núnez, L. F., Rangel, D., Martínez-Álvarez, O., Martínez-Alonso, C., Castaño, V.M., Simple one-step ultrasonic synthesis of anatase titania/polypyrrole nanocomposites, Ultrasonics Sonochemistry 20 (2013) 777784.CrossRefGoogle ScholarPubMed
Radychev, N., Scheunemann, D., Kruszynska, M., Frevert, K., Miranti, R., Kolny-Olesiak, J., Borchert, H., Parisi, J., Investigation of the morphology and electrical characteristics of hybrid blends based on poly(3-hexylthiophene) and colloidal CuInS2 nanocrystals of different shapes, Organic Electronics 13 (2012) 31543164.CrossRefGoogle Scholar
Hore, M. J. A and Composte, R. J., Strategies for dispersing, assembling, and orienting nanorods in polymers, Current Opinion in Chemical Engineering 2 (2013) 95102.CrossRefGoogle Scholar
Brandão, L., Viana, J., Bucknall, D. G., Bernardo, G., Solventless processing of conjugated polymers—A review, Synthetic Metals 197 (2014) 2333.CrossRefGoogle Scholar
Velázquez-Martínez, S., Desarrollo y fabricación de celdas solares de dióxido de titanio nanoestructurado sensibilizadas con colorante de rutenio, Master´s Thesis, CIICAp-UAEM (2014) 4244.Google Scholar
Murphy, A.B., Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting, Solar Energy Materials & Solar Cells 91 (2007) 13261337.CrossRefGoogle Scholar
Kwong, C.Y., Choy, W.C.H., Djurišić, A. B., Chui, PC, Cheng, K.W. and Chan, W. K., Poly(3-hexylthiophene):TiO2 nanocomposites for solar cell applications, Nanotechnology 15 (2004) 11561161.CrossRefGoogle Scholar