Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T15:01:43.109Z Has data issue: false hasContentIssue false

An overview of the Australian Centre for Advanced Photovoltaics and the Australia-US Institute for Advanced Photovoltaics

Published online by Cambridge University Press:  24 April 2015

Richard Corkish
Affiliation:
School of Photovoltaic & Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Martin A. Green
Affiliation:
School of Photovoltaic & Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Andrew W. Blakers
Affiliation:
Research School of Engineering, Australian National University, Canberra, ACT 0200, Australia
Paul L. Burn
Affiliation:
Centre for Organic Photonics & Electronics, University of Queensland, QLD 4072, Australia
Yi-Bing Cheng
Affiliation:
Department of Materials Engineering, Monash University, VIC 3800, Australia
Renate Egan
Affiliation:
School of Photovoltaic & Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Kenneth P. Ghiggino
Affiliation:
School of Chemistry, University of Melbourne, VIC 3010, Australia
Paul Meredith
Affiliation:
Global Change Institute, University of Queensland, QLD 4072, Australia
Fiona H. Scholes
Affiliation:
Manufacturing Flagship, CSIRO, Normanby Road, Clayton, VIC 3168, Australia
Gerry Wilson
Affiliation:
Division of Materials Science and Engineering, CSIRO, Bayview Avenue, Clayton VIC 3168, Australia
Get access

Abstract

The Australian Centre for Advanced Photovoltaics (ACAP) co-ordinates the activities of the six Australian research institutions and a group of industrial partners in the Australia-US Institute for Advanced Photovoltaics (AUSIAPV) to develop the next generations of photovoltaic device technology and to provide a pipeline of opportunities for performance increase and cost reduction. AUSIAPV links ACAP with US-based partners. These national and international research collaborations provide a pathway for highly visible, structured photovoltaic research collaboration between Australian and US researchers, institutes and agencies with significant joint programs based on the clear synergies between the participating organizations. The research program is organized in five collaborative Program Packages (PPs). PP1 deals with silicon wafer-based cells, focusing on three main areas: cells from solar grade silicon, rear contact and silicon-based tandem cells. PP2 involves research into a range of organic solar cells, organic/inorganic hybrid cells, "earth abundant" thin-film materials and "third generation" approaches. PP3 is concerned with optics and characterization. PP4 will deliver a substantiated methodology for assessing manufacturing costs of the different technologies and PP5 involves education, training and outreach. The main research topics, results and plans for the future are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Forstner, H., International Technology Roadmap for Photovoltaic (ITRPV) 2013 Results, http://www.itrpv.net/Reports/Downloads/, (2014).Google Scholar
Hallam, B. J., Hamer, P. G., Wenham, S. R., Abbott, M. D., Sugianto, A., Wenham, A. M., Chan, C. E., Xu, G. Q., Kraiem, J., Degoulange, J. and Einhaus, R., IEEE J. Photovolt. 4, 88 (2014).CrossRefGoogle Scholar
Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., Yamaguchi, T., Ichihashi, Y., Mishima, T., Matsubara, N., Yamanishi, T., Takahama, T., Taguchi, M., Maruyama, E. and Okamoto, S., IEEE J. Photovolt. 4, 1433 (2014).CrossRefGoogle Scholar
Green, M. A., Third Generation Photovoltaics: Ultra-High Efficiency at Low Cost. (Springer-Verlag, New York, 2003).Google Scholar
Schmieder, K. J., Gerger, A., Diaz, M., Pulwin, Z., Ebert, C., Lochtefeld, A., Opila, R., Barnett, A., 38th IEEE Photovoltaic Specialists Conference, Austin TX, (IEEE, 2012) pp. 968973.Google Scholar
Ringel, S. A., Carlin, J. A., Grassman, T. J., Galiana, B., Carlin, A. M., Ratcliff, C., Chmielewski, D., Yang, L., Mills, M. J., Mansouri, A., Bremner, S. P., Ho-Baillie, A., Hao, X., Mehrvarz, H., Conibeer, G. and Green, M. A., 39th IEEE Photovoltaic Specialists Conference, Tampa, FL, (IEEE, 2013), pp. 33833388.Google Scholar
Liu, Z. H., Hao, X. J., Ho-Baillie, A., Tsao, C. Y. and Green, M. A., Thin Solid Films 574, 99 (2015).CrossRefGoogle Scholar
Song, N., Wang, Y., Hu, Y. C., Huang, Y. D., Li, W., Huang, S. J. and Hao, X. J., Appl. Phys. Lett. 104, Article 92103 (2014).CrossRefGoogle Scholar
Blakers, A., Everett, V., Muric-Nesic, J. and Thomsen, E., International Conference on Materials for Advanced Technologies 2011, Symposium O 15, 5866 (2012).Google Scholar
Green, M. A., Ho-Baillie, A. and Snaith, H. J., Nat. Photon. 8, 506 (2014).CrossRefGoogle Scholar
Pillai, S., Beck, F. J., Catchpole, K. R., Ouyang, Z. and Green, M. A., J. Appl. Phys. 109, Article 073105, (2011).CrossRefGoogle Scholar
Keevers, M. J., Fai, C., Lau, J., Green, M. A., Thomas, I., Lasich, J. B., King, R. R. and Emery, K. A., 6th World Conference on Photovoltaic Energy Conversion, Kyoto, Japan (WCPEC-6, 2014).Google Scholar
Kashif, M. K., Nippe, M., Duffy, N. W., Forsyth, C. M., Chang, C. J., Long, J. R., Spiccia, L. and Bach, U., Angew. Chem. Int. Ed. 52, 5527 (2013).CrossRefGoogle Scholar
Bremner, S. P., Ban, K. Y., Faleev, N. N., Honsberg, C. B. and Smith, D. J., J. Appl. Phys. 114, Article 103511 (2013).CrossRefGoogle Scholar
Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. D., Prog. Photovolt. 23, 1 (2015).CrossRefGoogle Scholar
Rougieux, F. E. et al. ., in preparation for Prog. Photovolt.Google Scholar
Blakers, A., Franklin, E., Fong, K., McIntosh, K., Fell, A., Kho, T., Walter, D., Wang, D., Zin, N., Stocks, M., Wang, E.-C., Grant, N., Wan, Y., Yang, Y., Zhang, X., Feng, Z. and Verlinden, P.J., Asia-Pacific Solar Research Conference, Sydney, 810 December, 2014 (Australian Photovoltaics Institute, 2015).Google Scholar
Sun, K., Xiao, Z., Lu, S., Zajaczkowski, W., Pisula, W., Hanssen, E., White, J. M., Williamson, R. M., Subbiah, J., Ouyang, J., Holmes, A. B., Wong, W. W. H. and Jones, D. J., Nat Commun. 6, 6013 (2015).CrossRefGoogle Scholar
Huang, F. Z., Dkhissi, Y., Huang, W., Xiao, M., Benesperi, I., Rubanov, S., Zhu, Y., Lin, X., Jiang, L., Zhou, Y., Gray-Weale, A., Etheridge, J., McNeill, C. R., Caruso, R. A., Bach, U., Spiccia, L. and Cheng, Y.B., Nano Energy, 10, 10 (2014).CrossRefGoogle Scholar
Wenham, S. R. and Bruce, A., in PV in Europe - From PV Technology to Energy Solutions, edited by Bal, J.-L., Silvestrini, G., Grassi, A., Palz, W., Vigotti, R., Gamberale, M. and Helm, P. (WIP-Munich and ETA-Florence, Rome, Italy, 2002), pp. 240243.Google Scholar
Lund, C. et al. ., Renewing the Sustainable Energy Curriculum – Providing Internationally Relevant Skills for a Carbon Constrained Economy, a report for Office of Learning and Teaching, (www.murdoch.edu.au/School-of-Engineering-and-Information-Technology/Research/Renewing-the-Sustainable-Energy-Curriculum/)Google Scholar