Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:20:28.470Z Has data issue: false hasContentIssue false

An Experimental and Theoretical Multi-Mbar Study of Ti-6Al-4V

Published online by Cambridge University Press:  23 August 2011

Bengt E. Tegner
Affiliation:
SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions. The University of Edinburgh, EH9 3JZ, U.K.
Simon G. MacLeod
Affiliation:
Institute of Shock Physics, Imperial College London, SW7 2AZ, U.K.
Hyunchae Cynn
Affiliation:
Lawrence Livermore National Laboratories, Livermore, CA 94550, U.S.A.
John Proctor
Affiliation:
SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions. The University of Edinburgh, EH9 3JZ, U.K.
William J. Evans
Affiliation:
Lawrence Livermore National Laboratories, Livermore, CA 94550, U.S.A.
Malcolm I. McMahon
Affiliation:
SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions. The University of Edinburgh, EH9 3JZ, U.K.
Graeme J. Ackland
Affiliation:
SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions. The University of Edinburgh, EH9 3JZ, U.K.
Get access

Abstract

We report results from an experimental and theoretical study of the room temperature (RT) compression of the ternary alloy Ti-6Al-4V. In this work, we have extended knowledge of the equation of state (EOS) from 40 GPa to 221 GPa, and observed a different sequence of phase transitions to that reported previously for pure Ti.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peters, M., Hemptenmacher, J., Kumpfert, J., and Leyens, C., in Titanium and Titanium Alloys: Fundamentals and Applications, edited by Leyens, C. and Peters, M. (Wiley-VCH, Weinheim, Germany, 2003) pp. 135.Google Scholar
2. Chesnut, G. N., Velisavljevic, N., and Sanchez, L. in Shock Compression of Condensed Matter – 2007, edited by Elert, M., Furnish, M. D., Chau, R., Holmes, N., and Nguyen, J., (American Institute of Physics, New York, 2007) pp. 2730.Google Scholar
3. Halevy, I., Zamir, G., Winterrose, M., Sanjit, G., Grandini, C. R., and Moreno-Gobbi, A., J. Phys.: Conf. Ser. 215, 012013 (2010).Google Scholar
4. Bourne, N. K., Millett, J. C. F., and Gray, G. T. III, J. Mater. Sci. 44, 3319 (2009).Google Scholar
5. Vohra, Y. K. and Spencer, P. T., Phys. Rev. Lett. 86, 3068 (2001).Google Scholar
6. Akahama, Y., Kawamura, H., and Le Bihan, T., Phys. Rev. Lett. 87, 275503 (2001).Google Scholar
7. Errandonea, D., Meng, Y., Somayazulu, M., and Häusermann, D., Physica B 355, 116 (2005).Google Scholar
8. Vinet, P., Ferrante, J., Rose, J., and Smith, J., J. Geophys. Res. 92, 9319 (1987).Google Scholar
9. Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., and Payne, M. C., Z. Kristallogr. 220, 567 (2005).Google Scholar
10. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar