Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:10:30.501Z Has data issue: false hasContentIssue false

An Evaluation of Implantation-Disordering of (Inga)As/Gaas Strained-Layer Superlattices

Published online by Cambridge University Press:  26 February 2011

D. R. Myers
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
C. E. Barnes
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
G. W. Arnold
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
L. R. Dawson
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
R. M. Biefeld
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
T. E. Zipperian
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
P. L. Gourley
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
I. J. Fritz
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
Get access

Abstract

We have examined the optical and transport properties of In.2Ga.8As/GaAs straled-kayer superlZotices (SLS's), which have been implanted either with 5 × 1015/cm2, 250keV Zn+ or with 5 × 1014/cm2, 70keV Be+ and annealed under an arsenic overpressure at 600 °C. For both cases, electrical activation in the implantation-doped regions equalled that of similar implants and anneals in bulk GaAs, even though the Be implant retained the SLS structure, while the Zn implant intermixed the SLS layers to produce an alloy semiconductor of the average SLS composition. Photoluminescence intensities in the annealed implanted regions were significantly reduced from that of virgin material, apparently due to residual implant damage. Diodes formed from both the Be- and the Zn-implanted SLS's produced electroluminescence intensity comparable to that of grown-junction SLS diodes in the same chemical system, despite the implantation processing and the potential for vertical lattice mismatch in the Zn-disordered SLS device. These results indicate that Zn-disordering can be as useful in strained-layer superlattices as in lattice-matched systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Osbourn, G. C., Mat. Res. Symp. Proc. 25, 455 (1984).CrossRefGoogle Scholar
2. Zipperian, T. E., Dawson, L. R., Barnes, C. E., Wiczer, J. J. and Osbourn, G. C., IEDM Tech. Dig., 1984, to be published.Google Scholar
3. Myers, D. R., Biefeld, R. M., Fritz, I. J., Picraux, S. T. and Zipperian, T. E., Appl. Phys. Lett. 44, 1052 (1984).CrossRefGoogle Scholar
4. Myers, D. R., Zipperian, T. E., Biefeld, R. M. and Wiczer, J. J., IEDM Tech. Dig., 1983, 700 (1983).Google Scholar
5. Myers, D. R., Wiczer, J. J., Zipperian, T. E. and Biefeld, R. M., IEEE Electron Device Letters, EDL–5, 326 (1984).CrossRefGoogle Scholar
6. Bulman, G. E., Myers, D. R., Wiczer, J. J., Dawson, L. R., Biefeld, R. M. and Zipperian, T. E., IEDM Tech. Dig., 1984, to be published.Google Scholar
7. Camras, M. D., Coleman, J. J., Holonyak, N. Jr., Hess, K., Dapkus, P. D. and Kirkpatrick, C. G., Inst. Phys. Conf. Series 65, 233 (1983).Google Scholar
8. Picraux, S. T., Arnold, G. W., Myers, D. R., Dawson, L. R., Biefeld, R. M., Fritz, I. J. and Zipperian, T. E., Proc. IBMM'84 to be published in Nucl. Instrum. and Methods B.Google Scholar
9. Arnold, G. W., Picraux, S. T., Peercy, P. S., Myers, D. R. and Dawson, L. R., this session.Google Scholar
10. Fukuzawa, T., Semura, S., Ohta, T., Uchida, Y., Kobayashi, K.L.I. and Nakashima, H., IEDM Tech. Dig. 1983. p. 746.Google Scholar
11. Meeham, K., Brown, J. M., Holonyak, N. Jr., Burnham, R. D., Paoli, T. L. and Streifer, W., Appl. Phys. Lett. 44, 700 (1984).CrossRefGoogle Scholar
12. Laidig, W. D., Lee, J. W. and Caldwell, P. T., Appl. Phys. Lett. 45, 485 (1984).CrossRefGoogle Scholar
13. Dawson, L. R., Zipperian, T. E., Barnes, C. E., Wiczer, J. J. and Osbourn, G. C., Proc. Int. Conf. on GaAs and Related Compounds (Biarritz, France, 1984) to be published.Google Scholar
14. Biefeld, R. M., Osbourn, G. C., Gourley, P. L. and Fritz, I. J., J. Electron. Mater. 12, 903 (1983).CrossRefGoogle Scholar
15. McTevidge, W. V., Helix, M. J., Vaidyanathan, K. V. and Streetman, B. G., J. Appl. Phys. 48, 3342 (1977).Google Scholar
16. Kular, S. S., Sealey, B.J and Stevens, K. G., Electon. Lett. 14, 2 (1978).CrossRefGoogle Scholar
17. Barnes, C. E., Samara, G. A., Biefeld, R. M., Zipperian, T. E. and Osbourn, G. C., Proc. 13th Int. Conf. on the Physics of Defects in Semiconductors (San Diego, CA Aug. 12–17, 1984) to be published.Google Scholar
18. Donnelly, J. P., Nucl. Instrum. Methods, 182, 553 (1981).CrossRefGoogle Scholar
19. Myers, D. R., Gourley, P. L., and Peercy, P. S., J. Appl. Phys. 54, 5032 (1983).CrossRefGoogle Scholar
20. Mikkelsen, J. C. Jr and Boyce, J. B., Phys. Rev. B28, 7130 (1983).CrossRefGoogle Scholar
21. Winterbon, K. B., Atomic Energy of Canada, Limited report AECL 5536 (1976).Google Scholar
22. Chu, W. K., Kastl, R. H., and Murley, P. C., Rad. Eff. 47, 1 (1980).CrossRefGoogle Scholar
23. Wilson, W. D., Haggmark, L. G., and Biersack, J. P., Phy. Rev. B15, 2458 (1977).CrossRefGoogle Scholar