Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:26:17.514Z Has data issue: false hasContentIssue false

An Atomistic Study of Dislocations Controlling the Deformation Behavior of TiAl

Published online by Cambridge University Press:  22 February 2011

A. Girschick
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104-6272, USA
V Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104-6272, USA
Get access

Abstract

Atomistic studies of dislocation cores in a model TiAl compound (L10) carried out using Finnis-Sinclair type many body potentials are presented. Two different core configurations, one planar and the other non-planar, were found for both 1/2〈110] ordinary dislocations and 〈101] superdislocations while a core containing a microtwin was found in the case of the l/2[112] dislocation. The impact of these core structures upon the plastic behavior or PST and single-phase TiAl crystals is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamaguchi, M. and Inui, H., Structural Intermetallics, edited by Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B. and Nathal, M. V. (Metals park, Ohio, TMS), p. 127 ( 1993).Google Scholar
2. Yamaguchi, M. and Inui, H., Ordered Intermetallics - Physical Metallurgy and Mechanical Behaviour, edited by Liu, C. T., Cahn, R. W. and Sauthoff, G. (Dodrecht, Kluwer Academic Publishers), p. 217 ( 1992).Google Scholar
3. Simmons, J. P., Rao, S. I. and Dimiduk, D. M., High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J. D. and Yoo, M. H. (Pittsburgh, Materials Research Society), Vol. 288, p. 335 ( 1993).Google Scholar
4. Rao, S., Woodward, C. and Hazzledine, P. M., Defect-Interface Interactions, edited by Kvam, E. P., King, A. H., Mills, M. J., , S. T. D. and Vitek, V. (Pittsburgh, Materials Research Society), Vol. 319, p. 285 ( 1994).Google Scholar
5. Inui, H., Nakamura, A., Oh, M. H. and Yamaguchi, M., Philos. Mag. A 66, 557 (1992).Google Scholar
6. Inui, H., Oh, M. H., Nakamura, A. and Yamaguchi, M., Acta Metall. Mater. 40, 3095 (1992).Google Scholar
7. Kawabata, T., Kanai, T. and Izumi, O., Acta Metall 33, 1355 (1985).Google Scholar
8. Vitek, V., Dislocations and properties of real materials, edited by Lorretto, M. (London, The Institute of Metals), p. 30 ( 1985).Google Scholar
9. Duesbery, M. S. and Richardson, G. Y., CRC Critical Reviews in Solid State and Materials Science 17, 1 (1991).Google Scholar
10. Vitek, V., Prog. Mater. Sci. 36, 1 (1992).Google Scholar
11. Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50, 45 (1984).Google Scholar
12. Ackland, G. J. and Vitek, V., Phys. Rev. B 41, 10324 (1990).Google Scholar
13. Pearson, W. B., Handbook of Lattice Spacings and Structures of Metals and Alloys, (Pergamon Press, Oxford, 1967).Google Scholar
14. Hultgren, R., Orr, R. L., Anderson, P. D. and Kelley, K. K., Selected Values of the Thermodynamic Properties of Metals and Binary Alloys, (J. Wiley, New York, 1973).Google Scholar
15. Fu, C. L. and Yoo, M. H., Alloy Phase Stability and Design, edited by Stocks, G. M., Pope, D. P. and Giamei, A. F. (Pittsburgh, Materials Research Society), Vol. 186, p. 265 (1991).Google Scholar
16. Legrand, P. B., Philos. Mag. B 49, 171 (1984).Google Scholar
17. Hug, G., Loiseau, A. and Lasalmonie, A., Philos. Mag. A 54, 47 (1986).Google Scholar
18. Hemker, K. J., Viguier, B. and Mills, M. J., Mat. Sci. Eng. A 164, 391 (1993).Google Scholar