Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:44:31.888Z Has data issue: false hasContentIssue false

Ambient Effects on Thin Film Interactions

Published online by Cambridge University Press:  22 February 2011

Chin-An Chang*
Affiliation:
IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, N. Y. 10598
Get access

Abstract

Thin film interactions often show strong dependence on the annealing ambients used. The outdiffusion of a large number of metals and semiconductors through an overcoating gold film and subsequent formation of surface oxides have been observed to be greatly enhanced using a steam or air ambient compared with those using vacuum or inert ambients. The ambient effects become more puzzled when the overcoating metal consists of gold and silver layers, depending on the sequence of these layers. These ambient effects are shown to be well correlated by a surface potential model which considers both the relation between the overcoating metal and the underlying diffusing species, and the effects of ambient on the surface properties of the overcoating metal at the interface. Further ambient effects have been predicted and confirmed, including reduced interactions by oxygen for many systems with different overcoating metals. Different interaction mechanisms have also been observed, including competing ambient effects, competing interactions, and preferential reactions, all affected by the ambients used. Understandings of the various ambient effects not only provide important insights into the interface interactions in general, but also have great impact on metallurgical contacts in device technologies. Future studies for the ambient effects are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hiraki, A., Lugujjo, E. and Mayer, J. W., J. Appl. Phys. 43, 3643 (1972).CrossRefGoogle Scholar
2. Hiraki, A., Lugujjo, E., Nicolet, M.-A., and Mayer, J. W., Phys. Status Solidi A7, 401 (1971).CrossRefGoogle Scholar
3. Lawson, E. M. and Tavendale, A. J., J. App. Phys. 53, 8771 (1982).CrossRefGoogle Scholar
4. Sinha, A. K. and Poate, J. M., in Thin Films-Interdiffusion and Reactions, ed. Poate, J. M., Tu, K. N. and Mayer, J. W. (Wiley, New York, 1978), p.407.Google Scholar
5. Ohkawa, S., Akanuwa, O., and Ishikawa, H., Jpn. J. Appl. Phys. 14, 1589 (1975).CrossRefGoogle Scholar
6. Nelson, G. C. and Holloway, P. H., Metallurgical Applications of Surface Analysis Techniques, ASTMSTP 596 (American Society for Testing Materials, Philidelphia, 1976).Google Scholar
7. Thompkins, H. G. and Pinnel, M. R., J. Appl. Phys. 47, 3804 (1976).CrossRefGoogle Scholar
8. Rairden, J. R., Neugebsuer, C. A., and Sigsbee, R. A., Metall. Trans. 2, 719 (1971);Google Scholar
8a Barcz, A., Turos, A. and Wielunski, L., in Ion Beam Surface Layer Analysis, Mayer, O., Linker, G., and Kappeler, F., eds. Plenum Press, New York (1976), p.407.CrossRefGoogle Scholar
9. Ziegler, J. F., Baglin, J. E. E., and Gangulee, A., Appl. Phys. Lett. 24, 36 (1974).Google Scholar
10. Poate, J. M., Turner, P. A., DeBonta, W. J., and Yahalom, J., J. Appl. Phys. 46, 4275 (1975).Google Scholar
11. Shih, Da-Yuan and Ficalora, P. J., 16th Annual Proceedings Reliability Physics 1978, p.268.Google Scholar
12. Kang, K. D., Burgess, R. R., Coleman, M. G., and Keil, J. G., IEEE Trans. Electron Devices 16, 356 (1969).CrossRefGoogle Scholar
13. Baglin, J. E. E. and Poate, J. M., in Ref.4, p.305.Google Scholar
14. Hwang, J. C. M., Ho, P. S. and Ballufi, R. W., Appl. Phys. Lett. 33, 458 (1978).Google Scholar
15. Somorjai, G. A., Principles of Surface Chemistry (Prentice-Hall, Englewood Cliffs, 1972).Google Scholar
16. Chang, Chin-An, J. Electrochem. Soc. 127, 1331 (1980).Google Scholar
17. Thompkins, F. C., in The Solid-Gas Interface, ed. Flood, E. A. (Dekker, New York, 1967), Chap.25.Google Scholar
18. Chang, Chin-An, Surf. Sci. 95, L239 (1980).CrossRefGoogle Scholar
19. Chang, Chin-An, J. Electrochem. Soc. 123, 1245 (1976).Google Scholar
20. Pauling, L., The Nature of the Chemical Bond, 3rd ed. (Cornell University, New York, 1960).Google Scholar
21. Surplice, N. A. and Brearly, W., Surf. Sci. 52, 62 (1975).CrossRefGoogle Scholar
22. Wells, R. L. and Fort, T. Jr., Surf. Sci. 32, 554 (1972).Google Scholar
23. Chang, Chin-An and Chu, W.-K., Appl. Phys. Lett. 37, 161 (1980).Google Scholar
24. Chang, Chin-An and Chu, W.-K., J. Appl. Phys. 52, 512 (1981).Google Scholar
25. Chang, Chin-An, J. Appl. Phys. 52, 4620 (1981).Google Scholar
26. Chang, Chin-An, J. Appl. Phys. 53, 7092 (1982).CrossRefGoogle Scholar
27. Chang, Chin-An, J. Vac. Sci. Technol. 21, 639 (1982).Google Scholar
28. Chang, Chin-An, J. Appl. Phys. 53, 7088 (1982).Google Scholar
29. Chang, Chin-An, to be published.Google Scholar
30. Chang, Chin-An, Appl. Phys. Lett. 38, 860 (1981).Google Scholar
31. Nieuwenhuys, B. E., Surf. Sci. 105, 505 (1981);Google Scholar
31a Bradshaw, A. M. and Pritchard, J., Proc. Roy. Soc. Lond. A.316, 169 (1970);Google Scholar
31b Pritchard, J., Trans. Faraday Soc. 59, 437 (1963).Google Scholar
32. Chang, Chin-An and Chou, N. J., J. Vac. Sci. Technol. 17, 1358 (1980).CrossRefGoogle Scholar
33. Simanovsky, A. A., Stolyarova, S. V., and Upit, G. P., Thin Solid Films, 97, 301 (1982).Google Scholar
34. Chang, Chin-An and Ottaviani, G., to be published.Google Scholar