Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:45:36.007Z Has data issue: false hasContentIssue false

Alteration of Coffinite (USiO4) Under Reducing and Oxidizing Conditions

Published online by Cambridge University Press:  19 October 2011

Artur Piotr Deditius
Affiliation:
deditius@umich.edu, University of Michigan, Geological Sciences, 1100 N. University Ave., Ann Arbor, MI, 48109, United States, 734-763-5344
Satoshi Utsunomiya
Affiliation:
utu@umich.edu, University of Michigan, Geological Sciences, 1100 N. University Ave., Ann Arbor, MI, 48109, United States
Rodney C. Ewing
Affiliation:
rodewing@umich.edu, University of Michigan, Geological Sciences, 1100 N. University Ave., Ann Arbor, MI, 48109, United States
Get access

Abstract

Samples of natural coffinite (USiO4·nH2O) from Grants uranium region, New Mexico were investigated in order to understand the alteration process of coffinite under reducing and oxidizing conditions. Alteration of the primary coffinite under reducing conditions was promoted by organic acids and as a result secondary coffinite precipitated. Subsequently oxidizing fluids altered the coffinite, and (Na,K)-boltwoodite and jáchymovite precipitated with no rare earth elements. Based on the charge balance calculation we suggest that the amount of U6+ in the coffinite is less than 0.2 [apfu] and U6+ is accommodated in the structure via substitution: U4+ + Si4+ ⇔ U6+ + 2(OH)-. The high and variable analysis total of electron microprobe indicates that H2O is not an essential component in coffinite structure. The U-Pb ages of coffinite formation vary from 36.6-0 Ma suggesting that the coffinite has precipitated continuously in this period and organic matter can preserve reducing conditions even when oxidizing conditions dominate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Janeczek, J., (1999) in Uranium: Mineralogy, Geochemistry and the Environment edited by Burns, P.C. and Finch, R.J., (Rev. Mineral. 38, 1999) pp. 321392.Google Scholar
2. Amme, M., Wiss, T., Tiele, H., Boulet, P. and Lang, H., J. Nucl. Mater. 341, 209 (2005).Google Scholar
3. Hansley, P. L. and Fitzpatrick, J. J., Am. Miner. 74, 263 (1989).Google Scholar
4. Hansley, P. L. and Spirakis, C. S., Econ. Geol. 87, 352 (1992).Google Scholar
5. NAGRA NTB 02-05 Technical report. Wettingen, Switzerland, (2002) p. 360.Google Scholar
6. Stille, P., Gauthier-Lafaye, F., Jensen, K. A., Salah, S., Bracke, G., Ewing, R. C., Louvat, D. and Million, D., Chem. Geol. 198, 289 (2003).Google Scholar
7. Finch, R. J. and Hanchar, J. M., in Zircon edited by Hanchar, J. M. and Hoskin, P. W. O., (Rev. Mineral. 53, 2003) pp. 126.Google Scholar
8. Förster, H.-J., Lithos 88, 35 (2005).Google Scholar
9. Robit-Pointeau, V., Poinssot, C., Vitorge, P., Grambow, B., Cui, D., Spahiu, K. and Catalette, H., Mat. Res. Soc. Symp. Proc. 932, 489 (2006).Google Scholar
10. Goldhaber, M. B., Hemingway, B. S., Monhagheghi, A., Reynolds, R. L., Northrop, H. R., Bull. Minéral. 110, 131 (1987).Google Scholar
11. Ludwig, K. R., Simmons, K. R. and Webster, J. D., Econ. Geol. 79, 322 (1984).Google Scholar
12. Hansley, P. L., U. S. Geol. Survey Bull. 1808A, pp. 28.Google Scholar
13. Nagy, B., Gauthier-Lafaye, F., Hollinger, P., Davis, D. W., Mossman, D. J., Leventhal, J. S., Rigali, M. J. and Parnell, J., Nature 354, 472 (1991).Google Scholar
14. Nakashima, S., Disnar, J. R. and Perruchot, A., Econ. Geol. 94, 993 (1999).Google Scholar
15. Finch, R. J. and Nucl, R. C.Ewing, J. . Mater. 190, 133 (1992).Google Scholar
16. Langmuir, D., Geochim. Cosmochim. Acta. 42, 547 (1978).Google Scholar
17. Janeczek, J. and Ewing, R. C., Mat. Res. Soc. Symp. Proc. 257, 497 (1992).Google Scholar