Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T10:56:48.884Z Has data issue: false hasContentIssue false

Alpha-Decay Effects in 241Am-Doped Gadolinium Zirconate

Published online by Cambridge University Press:  16 May 2012

S.V. Stefanovsky
Affiliation:
SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 Russia, profstef@mtu-net.ru Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31, Moscow 119071 Russia
A.G. Ptashkin
Affiliation:
SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 Russia, profstef@mtu-net.ru
S.V. Yudintsev
Affiliation:
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Staromonetny 35, Moscow 119117 Russia
B.F. Myasoedov
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31, Moscow 119071 Russia
Get access

Abstract

Sample of zirconate ceramic with a composition corresponding to formula Gd1.7241Am0.3Zr2O7 was synthesized by heat-treatment of mechanically activated and compacted in pellet oxide mixture at 1500 °C for 30 min. The d values on XRD pattern of the sample soon after synthesis (D = 7.9×1015 α-decays/g or 0.001 dpa) demonstrated fluorite structure with the most intensive peak with d111 =3.042 Å (a = 5.269 Å) and very weak diffuse reflections due to d-pyrochlore. At a dose of 7.9×1017 α-decays/g or 0.11 dpa the reflections were broadened by approximately 20% and their relative intensity slightly reduced. At higher doses all the weak superstructure reflections disappeared and the growth in intensity and narrowing of the main reflection occurred. Lattice parameter a increased with the dose and reached 5.343 Å (d111 = 3.085 Å) at a dose of 4.6×1018 α-decays/g or 0.42 dpa. At a dose of 5.5×1018 α-decays/g or 0.78 dpa positions of reflections were shifted to lower d-spaces (d111 value reduced to 3.071 Å) and the half-width of the major reflection was 67% of initial. For the 241Am-doped Gd-zirconate the structure recovery rate exceeds disordering rate and no amorphization occurred at doses higher than ∼0.2-0.3 dpa.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., and Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).Google Scholar
2. Ewing, R.C., Weber, W.J., Lian, J., J. Appl. Phys. 95, 5949 (2004).Google Scholar
3. Stefanovsky, S.V., Yudintsev, S.V., Gierė, R., and Lumpkin, G.R., “Nuclear Waste Forms,” in: Energy, Waste, and the Environment: a Geochemical Perspective, ed. By Gierė, R. and Stille, P. (Geological Society, London, Special Publication, 236, 2004) pp. 3763.Google Scholar
4. Yudintsev, S.V., Stefanovsky, S.V. and Ewing, R.C., “Actinide Host Phases as Radioactive Waste Forms,” in: Structural Chemistry of Inorganic Actinide Compounds, ed. By Krivovichev, S.V., Burns, P.C. and Tananaev, I.G. (Elsevier, 2007) pp. 457490.Google Scholar
5. Weber, W.J., Navrotsky, A., Stefanovsky, S., Vance, E.R. and Vernaz, E., Mater. Res. Soc. Bull. 34, 46 (2009).Google Scholar
6. Burakov, B. E., Ojovan, M. and Lee, W. E., Crystalline Materials for Actinide Immobilisation (Imperial College Press, London, 2011).Google Scholar
7. Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., Govidan Kutty, K.V., J. Mater. Res. 14, 4470 (1999).Google Scholar
8. Wang, S.X., Wang, L.M., Ewing, R.C., and Govidan Kutty, K.V., Nucl. Instrum. Meth. Res. B169, 135 (2000).Google Scholar
9. Begg, B.D., Hess, N.J., McCready, D.E., Thevuthasan, S., and Weber, W.J., J. Nucl. Mater. 289, 188 (2001).Google Scholar
10. Strachan, D.M., Sheele, R.D., Buck, E.C., Icenhower, J.P., Kozelisky, A.E., Sell, R.L., Elovich, R.J., Buchmiller, W.C., J. Nucl. Mater. 345, 109 (2005).Google Scholar
11. Yudintsev, S.V., Lukinykh, A.N., Tomilin, S.V., Lizin, A.A., and Stefanovsky, S.V., J. Nucl. Mater. 385, 200 (2009).Google Scholar
12. Stefanovsky, S.V., Lukinykh, A.N., Tomilin, S.V., Lizin, A.A., Yudintsev, S.V., in: Scientific Basis for Nuclear Waste Management-XXXI, edited by Lee, W.E., Roberts, J.W., Hyatt, N.C. and Grimes, R.W., (Mater. Res. Soc. Symp. Proc. 1107, Warrendale, PA, 2008) pp. 389394.Google Scholar
13. Sykora, R.E., Raison, P.E., and Haire, R.G., J. Solid State Chem. 178, 578 (2005).Google Scholar
14. Walter, M., Nästren, C., Somers, J., Jardin, R., Denecke, M.A., and. Brendebach, B., J. Solid State Chem. 180, 3130 (2007).Google Scholar
15. Belin, R.C., Valenza, P.J., Raison, P.E., and Tillard, M., J. Alloys. Compd. 448, 321 (2008).Google Scholar
16. Belin, R.C., in: Actinides 2005 Conference – Recent Advances in Actinide Science, 4-8 July 2005 (University of Manchester RSC Publ. 2005) p. 352.Google Scholar
17. Nästren, C., Jardin, R., Somers, J., Walter, M., and Brendebach, B., J. Solid State Chem. 182, 1 (2009).Google Scholar
18. Belin, R.C., Martin, P.M., Valenza, P.J., and Sheinost, A.C., Inorg. Chem. 48, 5376 (2009).Google Scholar
19. Martin, P.M., Belin, R.C., Valenza, P.J., and Sheinost, A.C., J. Nucl. Mater. 385, 126 (2009).Google Scholar
20. Shannon, R.D., Acta Cryst. A32, 751 (1976).Google Scholar
21. Uehara, T., Koto, K., Kanamaru, F., and Horiuchi, H., Solid State Ionics. 23, 137 (1987).Google Scholar
22. Keller, C., Advan. Chem. Ser. 71, 228 (1967).Google Scholar
23. Burakov, B.E., Yagovkina, M.A., Zamoryanskaya, M.V., Kitsay, A.A., Garbuzov, V.M., Anderson, E.B., and Pankov, A.S., in: Scientific Basis for Nuclear Waste Management – XXVII, edited by Oversby, V.M. and Verme, L.O. (Mater. Res. Soc. Symp. Proc. 807, Warrendale, PA, 2004) pp. 213217.Google Scholar
24. Phase Diagrams of Systems of High-Fusible Oxides, edited by Galakhov, F.Y. (Leningrad, USSR, Nauka, 1985) pp.323324.Google Scholar
25. Wang, L.M., Zhu, S., Wang, S.X., Ewing, R.C., in: Scientific Basis for Nuclear Waste Management – XXIV, edited by Hart, K.P. and Lumpkin, G.R., (Mater. Res. Soc. Symp. Proc. 663, Warrendale, PA, 2001) pp. 293300.Google Scholar