Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T14:59:29.408Z Has data issue: false hasContentIssue false

Al-Oxynitride Buffer Layer Facilities for PrOX/SiC Interfaces

Published online by Cambridge University Press:  01 February 2011

Karsten Henkel
Affiliation:
henkel@tu-cottbus.de, BTU Cottbus, Angewandte Physik-Sensorik, K.-Wachsmann-Allee 17, Cottbus, 03046, Germany, 0049-(0)355-694069, 0049-(0)355-693931
Rakesh Sohal
Affiliation:
rakesh_sohal@yahoo.com, BTU Cottbus, Angewandte Physik-Sensorik, K.-Wachsmann-Allee 17, Cottbus, 03046, Germany
Carola Schwiertz
Affiliation:
carola.schwiertz@tu-cottbus.de, BTU Cottbus, Angewandte Physik-Sensorik, K.-Wachsmann-Allee 17, Cottbus, 03046, Germany
Yevgen Burkov
Affiliation:
burkoyev@tu-cottbus.de, BTU Cottbus, Angewandte Physik-Sensorik, K.-Wachsmann-Allee 17, Cottbus, 03046, Germany
Mohamed Torche
Affiliation:
torche@tu-cottbus.de, BTU Cottbus, Angewandte Physik-Sensorik, K.-Wachsmann-Allee 17, Cottbus, 03046, Germany
Dieter Schmeißer
Affiliation:
dsch@tu-cottbus.de, BTU Cottbus, Angewandte Physik-Sensorik, K.-Wachsmann-Allee 17, Cottbus, 03046, Germany
Get access

Abstract

We investigate the dielectric properties of Praseodymium based oxides and silicates by preparing MIS structures consisting of a metal layer (M), PrOX (praseodymium oxide) as a high-k insulating layer (I), and silicon (Si) or silicon carbide (SiC) as semiconductor substrates (S).

The use of a buffer layer between PrOX and SiC is necessary as we found destructive interactions like silicate and graphite formation between these materials. Based on a higher permittivity value than SiO2 and a good lattice matching in conjunction with nearly the same thermal expansion coefficient to SiC, we focus on aluminum oxynitride (AlON) as a suitable buffer layer for this high-k/wide-bandgapsystem. We report on results achieved by Synchrotron Radiation Photoemission Spectroscopy (SRPES) and by electrical measurements.

In our spectroscopic investigations we found a stable AlON/3C-SiC interface as well as no elemental carbon and silicate contributions in the core levels after thin PrOX deposition and annealing up to 900°C.

In electrical characterizations of PrOX/AlON stacks on silicon we already found a strong improvement in the leakage current down to values of 10-7 A/cm2 at an CET of 4nm. We observed an interface state density in the range of 5x1011-1x1012/eVcm2 and 1-5x1012/eVcm2 on Si and SiC, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zolper, J.C., and Skowronski, M: MRS Bull. 30, 273 (2005).Google Scholar
2. Zschech, E. et al.: Advances in Solid State Physics 45, 375 (2005).Google Scholar
3. Osten, H.J., Bugiel., E., Fissel, A.: Sol. Stat. Elec. 47, 2161 (2003).Google Scholar
4. Goryachko., A. et al.: Phys. Status Solidi C 1(2), 265 (2004).Google Scholar
5. Schmeißer, D., Müssig, H.-J., and Dabrowski, J.: Appl. Phys. Lett. 85 (1), 88 (2004).Google Scholar
6. Henkel, K. et al.: MRS Proc. 911, B1011 (2006).Google Scholar
7. Robertson, J.: J. Non-Cryst. Solids 303, 94 (2002)Google Scholar
8. Wilk, G.D., Wallace., R. M., Anthony, J. M.: J Appl Phys 89, 5243 (2001).Google Scholar
9. Kukli, K. et al.: Chem. Mater. 16, 5162 (2004).Google Scholar
10. Schmeißer, D., Müssig, H.-J.: J. Phys.-Condens. Mat. 16, S153 (2004).Google Scholar
11. Tanner, C.M. et al.: Appl. Phys. Lett. 90, 061916 (2007).Google Scholar
12. Afanas'ev, V.V. et al.: Appl. Phys. Lett. 82 (6) 922 (2003).Google Scholar
13. Nigro, R. Lo et al.: Toro, R.G. Mat. Sci. Sem. Proc. 9, 1073 (2006).Google Scholar
14. Grossner, U. et al.: 6th Eur. Conf SiC Rel. Mat.- CSCRM 2006, Abstract book, Tu5.4Google Scholar
15. Perez-Tomas, A. et al.: J Electrochem. Soc. 152, G259 (2005).Google Scholar
16. Cheong, K.Y. et al: Electrochem. Sol. Stat. Lett. 10, H69 (2007).Google Scholar
17. Yamashita., H., Fukui., K., Misawa., S., and Yoshida, S.: J. Appl. Phys. 50, 896 (1979).Google Scholar
18. Collins, A.T., Lightowlers, E.C., and Dean, P.J.: Phys. Rev. 158 (3), 833 (1967)Google Scholar
19. Weks, T.W. et al.: Appl. Phys. Lett. 67, 401 (1995).Google Scholar
20. King, S.W. et al.: J Appl. Phys. 86, 4483 (1999).Google Scholar
21. Goryachko, A. et al.: Phys. Status Solidi A 201, 245 (2004).Google Scholar
22. Torche., M., Henkel., K., and Schmeißer, D.: Mater. Sci. Eng. C 26, 1127 (2006).Google Scholar
23. Hoffmann., P., Mikalo, R.P., and Schmeißer, D., J. Non-Cryst. Solids 303 (1), 6 (2002).Google Scholar
24. Nicollian, E.H., Brews, J.R.: MOS Physic and Technology. Wiley, New York 1982.Google Scholar
25. Sohal, R. et al.: Mat. Sci. Sem. Proc. 9, 945 (2006).Google Scholar
26. Lupina, G. et al.: J Appl. Phys. 99, 114109 (2006).Google Scholar
27. Ligatchev., V., Rusli, Z. Pan: Appl. Phys. Lett. 87, 242903 (2005).Google Scholar